Abstract

A 3-bit binary photonic delay line is demonstrated at 1 GHz by use of a directly modulated semiconductor laser and remote interconnection fiber optics. Three types of free-space delay-bit geometries are tested for 5.69-ns, 1.67-ns, and 8.8-ps designed delay bits. This is the first time, to our knowledge, that a photonic delay line is demonstrated with ferroelectric liquid-crystal optical onoff devices for optical path switching and active polarization noise filtering. Three-dimensional imaging optics and antireflection-coated optics (for all but five components) are used successfully to minimize photonic delay-line insertion losses and interchannel cross talk. The 3-bit system is fully characterized for measured and designed performance.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Riza, ed., Selected Papers on Photonic Control of Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1997).
  2. S. J. Lin, R. S. Boughton, “Acousto-optic multichannel programmable true time delay lines,” in Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 162–173 (1989).
    [CrossRef]
  3. D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
    [CrossRef]
  4. L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photon. Technol. Lett. 8, 160–162 (1996).
    [CrossRef]
  5. R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995).
    [CrossRef]
  6. D. Dolfi, F. Michel-Gabriel, S. Bonn, J.-P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991);D. Dolfi, P. Joffre, J. Antoine, J.-P. Huignard, D. Philippet, P. Granger, “Experimental demonstration of a phased-array antenna optically controlled with phase and time delays,” Appl. Opt. 35, 5293–5600 (1996).
    [CrossRef] [PubMed]
  7. H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
    [CrossRef]
  8. A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994).
    [CrossRef] [PubMed]
  9. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395–7397 (1992).
    [CrossRef] [PubMed]
  10. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
    [CrossRef]
  11. J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
    [CrossRef]
  12. N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
    [CrossRef]
  13. N. A. Riza, N. Madamopoulos, “Phased-array antenna, maximum-compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997).
    [CrossRef] [PubMed]
  14. N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
    [CrossRef]
  15. N. A. Riza, “High-optical-isolation low-loss moderate-switching-speed nematic liquid-crystal optical switch,” Opt. Lett. 19, 1780–1782 (1994).
    [CrossRef] [PubMed]
  16. N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
    [CrossRef]
  17. N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
    [CrossRef] [PubMed]
  18. N. A. Riza, N. Madamopoulos, “Microwave band demonstration of a reflective geometry fiber and free-space binary photonic delay line,” Microwave Guided Wave Lett. 7, 103–105 (1997).
    [CrossRef]
  19. J. Adam, “Pinning defense hopes on AEGIS,” IEEE Spectrum 25(6), 24–27 (1988).
    [CrossRef]
  20. N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.
  21. N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
    [CrossRef]
  22. N. Madamopoulos, N. A. Riza, “Switched three-dimensional photonic delay line using directly modulated semiconductor lasers for microwave radar processing,” in Radar Processing, Technology and Applications, W. J. Miceli, ed., Proc. SPIE2754, 266–275 (1996).
    [CrossRef]
  23. Displaytech Shutters User’s Manual, Version 1.1 (Displaytech, Inc., Boulder, Colo., February1994).
  24. Selfoc Product Guide [Nippon Sheet Glass Co. (NSG) America, Somerset, N.J., 1995].
  25. J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
    [CrossRef]
  26. QLINK1-XXX series , Lasertron 1996/97 Product Guide (Lasertron, Inc., Bedford, Mass., 1996).
  27. G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
    [CrossRef]
  28. M. C. DeJule, T. L. Credelle, N. A. Riza, D. E. Castleberry, “Compact polarization dependent optical switching units,” U.S. patent5,345,321 (6September1994).
  29. X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
    [CrossRef]
  30. N. A. Riza, “Advances in three-dimensional reversible photonic modules for phased-array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE2844, 274–283 (1996).
    [CrossRef]
  31. N. A. Riza, S. Yuan, “Robust packaging of photonic rf modules using ultra-thin adaptive optical interconnect devices,” in Optical Technology for Microwave Applications VIII, Proc. SPIE3160, 170–177 (1997).
    [CrossRef]
  32. M. R. Feldman, A. E. Erlich, “Diffractive optics improve product design,” Photon. Spectra 29, 115–120 (1995).
  33. Diffractive pattern generators data sheet (Digital Optics Corp., Charlotte, N.C., 1996).

1997

N. A. Riza, N. Madamopoulos, “Microwave band demonstration of a reflective geometry fiber and free-space binary photonic delay line,” Microwave Guided Wave Lett. 7, 103–105 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Phased-array antenna, maximum-compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997).
[CrossRef] [PubMed]

1996

D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
[CrossRef]

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photon. Technol. Lett. 8, 160–162 (1996).
[CrossRef]

1995

R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995).
[CrossRef]

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

M. R. Feldman, A. E. Erlich, “Diffractive optics improve product design,” Photon. Spectra 29, 115–120 (1995).

N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
[CrossRef] [PubMed]

1994

A. Goutzoulis, K. Davies, J. Zomp, P. Hrycak, A. Johnson, “Development and field demonstration of a hardware-compressive fiber-optic true-time-delay steering system for phased-array antennas,” Appl. Opt. 33, 8173–8185 (1994).
[CrossRef] [PubMed]

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
[CrossRef]

N. A. Riza, “High-optical-isolation low-loss moderate-switching-speed nematic liquid-crystal optical switch,” Opt. Lett. 19, 1780–1782 (1994).
[CrossRef] [PubMed]

1993

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

1992

1991

1988

J. Adam, “Pinning defense hopes on AEGIS,” IEEE Spectrum 25(6), 24–27 (1988).
[CrossRef]

Adam, J.

J. Adam, “Pinning defense hopes on AEGIS,” IEEE Spectrum 25(6), 24–27 (1988).
[CrossRef]

Alameh, K. E.

R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995).
[CrossRef]

Bonn, S.

Boughton, R. S.

S. J. Lin, R. S. Boughton, “Acousto-optic multichannel programmable true time delay lines,” in Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 162–173 (1989).
[CrossRef]

Burns, W. K.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Castleberry, D. E.

M. C. DeJule, T. L. Credelle, N. A. Riza, D. E. Castleberry, “Compact polarization dependent optical switching units,” U.S. patent5,345,321 (6September1994).

Chang, Y.

D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Cohen, D. A.

D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
[CrossRef]

Cooper, D. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Credelle, T. L.

M. C. DeJule, T. L. Credelle, N. A. Riza, D. E. Castleberry, “Compact polarization dependent optical switching units,” U.S. patent5,345,321 (6September1994).

Davies, K.

DeJule, M. C.

M. C. DeJule, T. L. Credelle, N. A. Riza, D. E. Castleberry, “Compact polarization dependent optical switching units,” U.S. patent5,345,321 (6September1994).

Dexter, J. L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Dolfi, D.

Erlich, A. E.

M. R. Feldman, A. E. Erlich, “Diffractive optics improve product design,” Photon. Spectra 29, 115–120 (1995).

Esman, R. D.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Espiau, F. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Feldman, M. R.

M. R. Feldman, A. E. Erlich, “Diffractive optics improve product design,” Photon. Spectra 29, 115–120 (1995).

Fetterman, H. R.

D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Forrest, S. R.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photon. Technol. Lett. 8, 160–162 (1996).
[CrossRef]

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Fourikis, N.

R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995).
[CrossRef]

Frankel, M. Y.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Goldberg, L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Gopalakrishnan, G. K.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Goutzoulis, A.

Haus, H. A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Howerton, M. M.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Hrycak, P.

Huignard, J.-P.

Johnson, A.

Jones, V. I.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Kelly, J. R.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Kim, J.

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

Lee, J. J.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Levi, A. F. J.

D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
[CrossRef]

Lewis, J. B.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Lin, S. J.

S. J. Lin, R. S. Boughton, “Acousto-optic multichannel programmable true time delay lines,” in Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 162–173 (1989).
[CrossRef]

Livingston, S.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Loo, R. Y.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Madamopoulos, N.

N. A. Riza, N. Madamopoulos, “Microwave band demonstration of a reflective geometry fiber and free-space binary photonic delay line,” Microwave Guided Wave Lett. 7, 103–105 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Phased-array antenna, maximum-compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997).
[CrossRef] [PubMed]

N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
[CrossRef] [PubMed]

N. Madamopoulos, N. A. Riza, “Switched three-dimensional photonic delay line using directly modulated semiconductor lasers for microwave radar processing,” in Radar Processing, Technology and Applications, W. J. Miceli, ed., Proc. SPIE2754, 266–275 (1996).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.

N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
[CrossRef]

Maleki, L.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Mather, A.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Michel-Gabriel, F.

Minasian, R. A.

R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995).
[CrossRef]

Moeller, R. P.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Newberg, I. L.

D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
[CrossRef]

Osgood, R. M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Parent, M. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Plant, D. V.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Riza, N. A.

N. A. Riza, N. Madamopoulos, “Microwave band demonstration of a reflective geometry fiber and free-space binary photonic delay line,” Microwave Guided Wave Lett. 7, 103–105 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Phased-array antenna, maximum-compression, reversible photonic beam former with ternary designs and multiple wavelengths,” Appl. Opt. 36, 983–996 (1997).
[CrossRef] [PubMed]

N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

N. A. Riza, N. Madamopoulos, “High signal-to-noise ratio birefringence-compensated optical delay line based on a noise-reduction scheme,” Opt. Lett. 20, 2351–2353 (1995).
[CrossRef] [PubMed]

N. A. Riza, “High-optical-isolation low-loss moderate-switching-speed nematic liquid-crystal optical switch,” Opt. Lett. 19, 1780–1782 (1994).
[CrossRef] [PubMed]

N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
[CrossRef]

N. A. Riza, S. Yuan, “Robust packaging of photonic rf modules using ultra-thin adaptive optical interconnect devices,” in Optical Technology for Microwave Applications VIII, Proc. SPIE3160, 170–177 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.

M. C. DeJule, T. L. Credelle, N. A. Riza, D. E. Castleberry, “Compact polarization dependent optical switching units,” U.S. patent5,345,321 (6September1994).

N. A. Riza, “Advances in three-dimensional reversible photonic modules for phased-array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE2844, 274–283 (1996).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Switched three-dimensional photonic delay line using directly modulated semiconductor lasers for microwave radar processing,” in Radar Processing, Technology and Applications, W. J. Miceli, ed., Proc. SPIE2754, 266–275 (1996).
[CrossRef]

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

Scott, D. C.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Simonis, G. J.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Soref, R.

Stilwell, D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

Streier, W. H.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Tangonan, G. L.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Taylor, R.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photon. Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Wechesberg, M.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Williams, K. J.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

Wu, M.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

Xu, L.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photon. Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Yao, X. S.

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

Yen, H. W.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

Yuan, S.

N. A. Riza, S. Yuan, “Robust packaging of photonic rf modules using ultra-thin adaptive optical interconnect devices,” in Optical Technology for Microwave Applications VIII, Proc. SPIE3160, 170–177 (1997).
[CrossRef]

Zomp, J.

Appl. Opt.

IEEE Microwave Guided Wave Lett.

H. R. Fetterman, Y. Chang, D. C. Scott, S. R. Forrest, F. M. Espiau, M. Wu, D. V. Plant, J. R. Kelly, A. Mather, W. H. Streier, R. M. Osgood, H. A. Haus, G. J. Simonis, “Optically controlled phased array radar receiver using SLM switched real time delays,” IEEE Microwave Guided Wave Lett. 5, 414–416 (1995).
[CrossRef]

IEEE Photon. Technol. Lett.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G. Parent, D. Stilwell, D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5, 1347–1349 (1993).
[CrossRef]

N. A. Riza, “25-Channel nematic liquid crystal optical time-delay unit characterization,” IEEE Photon. Technol. Lett. 7, 1285–1287 (1995).
[CrossRef]

X. S. Yao, L. Maleki, “A novel 2-D programmable photonic time-delay device for millimeter-wave signal processing applications,” IEEE Photon. Technol. Lett. 6, 1463–1465 (1994).
[CrossRef]

D. A. Cohen, Y. Chang, A. F. J. Levi, H. R. Fetterman, I. L. Newberg, “Optically controlled serially fed phased array sensor,” IEEE Photon. Technol. Lett. 8, 1683–1658 (1996).
[CrossRef]

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photon. Technol. Lett. 8, 160–162 (1996).
[CrossRef]

IEEE Spectrum

J. Adam, “Pinning defense hopes on AEGIS,” IEEE Spectrum 25(6), 24–27 (1988).
[CrossRef]

IEEE Trans. Ant. Propag.

J. J. Lee, R. Y. Loo, S. Livingston, V. I. Jones, J. B. Lewis, H. W. Yen, G. L. Tangonan, M. Wechesberg, “Photonic wideband array antennas,” IEEE Trans. Ant. Propag. 43, 966–982 (1995).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

G. K. Gopalakrishnan, R. P. Moeller, M. M. Howerton, W. K. Burns, K. J. Williams, R. D. Esman, “A low-loss downconverting analog fiber-optic link,” IEEE Trans. Microwave Theory Tech. 43, 2318–2323 (1995).
[CrossRef]

J. Lightwave Technol.

N. A. Riza, N. Madamopoulos, “Characterization of a ferroelectric liquid crystal based time delay unit for phased array antenna applications,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, “Liquid crystal-based optical time delay units for phased array antennas,” J. Lightwave Technol. 12, 1440–1447 (1994).
[CrossRef]

Microwave Guided Wave Lett.

N. A. Riza, N. Madamopoulos, “Microwave band demonstration of a reflective geometry fiber and free-space binary photonic delay line,” Microwave Guided Wave Lett. 7, 103–105 (1997).
[CrossRef]

Microwave Opt. Technol. Lett.

R. A. Minasian, K. E. Alameh, N. Fourikis, “Wavelength-multiplexed photonic beam-former architecture for microwave phased arrays,” Microwave Opt. Technol. Lett. 10, 84–88 (1995).
[CrossRef]

Opt. Lett.

Photon. Spectra

M. R. Feldman, A. E. Erlich, “Diffractive optics improve product design,” Photon. Spectra 29, 115–120 (1995).

Other

Diffractive pattern generators data sheet (Digital Optics Corp., Charlotte, N.C., 1996).

N. A. Riza, ed., Selected Papers on Photonic Control of Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1997).

S. J. Lin, R. S. Boughton, “Acousto-optic multichannel programmable true time delay lines,” in Optical Technology for Microwave Applications IV, S.-K. Yao, ed., Proc. SPIE1102, 162–173 (1989).
[CrossRef]

N. A. Riza, “Advances in three-dimensional reversible photonic modules for phased-array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE2844, 274–283 (1996).
[CrossRef]

N. A. Riza, S. Yuan, “Robust packaging of photonic rf modules using ultra-thin adaptive optical interconnect devices,” in Optical Technology for Microwave Applications VIII, Proc. SPIE3160, 170–177 (1997).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Switched three-dimensional photonic delay line using directly modulated semiconductor lasers for microwave radar processing,” in Radar Processing, Technology and Applications, W. J. Miceli, ed., Proc. SPIE2754, 266–275 (1996).
[CrossRef]

Displaytech Shutters User’s Manual, Version 1.1 (Displaytech, Inc., Boulder, Colo., February1994).

Selfoc Product Guide [Nippon Sheet Glass Co. (NSG) America, Somerset, N.J., 1995].

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

QLINK1-XXX series , Lasertron 1996/97 Product Guide (Lasertron, Inc., Bedford, Mass., 1996).

M. C. DeJule, T. L. Credelle, N. A. Riza, D. E. Castleberry, “Compact polarization dependent optical switching units,” U.S. patent5,345,321 (6September1994).

N. A. Riza, N. Madamopoulos, “Phased array radar control using ferroelectric liquid crystal devices,” in LEOS ’96 Conference Proceedings: Ninth Annual Meeting (IEEE Lasers and Electro-Optics Society, Boston, Mass., 1996), Vol. 2, paper WG2, pp. 52–53.

N. A. Riza, N. Madamopoulos, “Photonic time delay beamforming architectures using polarization switching arrays,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 186–197 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental 3-bit PDL system with FLC devices, imaging optics, and fiber-optic remoting. The nondelay paths are represented by solid lines, while the delay paths are represented by dashed lines. TIR, total-internal-reflection prism; PBS, polarizing beam-splitter cube; L, lens; M, mirror; P(p), p polarizer; P(s), s polarizer.

Fig. 2
Fig. 2

Our infrared 1310-nm FLC polarization-switching device. Each device consists of three FLC cells in cascade.

Fig. 3
Fig. 3

Optical interchannel cross talk relative to the center active channel of the 3-D PDL, with measurements taken along (a) the x and (b) the y directions at the PDL output plane. A maximum optical cross talk of -27.47 dB (or -54.94 dB rf) is measured at the nearest-to-center channel in the x direction. These optical power measurements are taken directly from the PDL output plane before the GRIN-lens–fiber assembly. The 3-D PDL has a channel capacity of 196 channels.

Fig. 4
Fig. 4

CNR measurements of the 1-GHz modulation Lasertron Model QLINK1-051 fiber-optic link (a) without (103 dB/Hz) and (b) with (79.34 dB/Hz) the PDL. The noise marker is placed at a 100-kHz offset, and the analyzer RBW is 1.0 kHz.

Fig. 5
Fig. 5

Oscilloscope traces showing the time-delayed signals for three different time-delay settings of the PDL. Trace A corresponds to the measured zero-delayed signal; Trace B corresponds to a measured 1.66-ns delayed signal; Trace C corresponds to a 5.720-ns measured delayed signal. The arrows show the points between which the time-delay measurements were taken. Scope resolution is 1 ps.

Fig. 6
Fig. 6

Oscilloscope traces showing (a) the 33-μs time delay before the FLC device starts responding to the applied voltage and (b) the 35-μs (10% to 90% or vice versa) rise or fall time. Top trace: the photodetected optical output showing the FLC-device time response. Bottom trace: the specially optimized waveform with a ±15-V switching transient voltage and a ±5-V holding voltage. Note that the driving voltage observed on the oscilloscope has been attenuated by 10 dB.

Fig. 7
Fig. 7

Pyramid design of a 4-bit multichannel PDL showing packaging in three dimensions for redistribution of weight and size. (a) Parallel planes of propagation for all the bits (a single optical beam is shown for simplicity). (b) Top-layer layout (top view). LSB, least significant bit; MSB, most significant bit.

Fig. 8
Fig. 8

SA pixel-to-pixel low-loss interconnection design for high interchannel isolation that uses microlens arrays.

Tables (2)

Tables Icon

Table 1 Measured and Designed Optical Losses for Each Bit and for the Overall PDL

Tables Icon

Table 2 rf-Analyzer-Limited CNR Measurements for Five Time-Delay Settings of the PDLa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ t = 4 f 2 c + 4 n TIR d TIR c - d TIR n TIR c + n PBS d PBS c - d PBS n PBS c ,
Δ t = 4   f 4 - f 3 c .
Δ t = n d 2 - d 1 c - d 2 - d 1 nc ,

Metrics