Abstract

A new spatial light modulator that uses electroabsorption induced by the Franz–Keldysh effect in a GaAs single crystal is proposed. The device has the same structure as the Pockels readout optical modulator, is driven by a high ac voltage, and is operated in the superprime mode. Its high-frame-rate (over 500-Hz) operation, high contrast ratio (350:1), and large γ characteristics (2.47) were experimentally confirmed in the transmission mode, although its operating-wavelength (readout) region is restricted to a narrow band near the band gap. In the reflection mode, however, this device has a high contrast ratio and large γ characteristic (approximately 5), offering the possibility of its use as a nonlinear device.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
    [CrossRef] [PubMed]
  2. T. Minemoto, O. Kim, H. Hiratsuka, “Parallel image processing algorithms based on mathematical morphology using a multiple-imaging system,” Opt. Rev. 2, 352–361 (1995).
    [CrossRef]
  3. J. Tanida, J. Nakagawa, E. Yagyu, M. Fukui, Y. Ichioka, “Experimental verification of parallel processing on a hybrid optical parallel array logic system,” Appl. Opt. 29, 2510–2521 (1990).
    [CrossRef] [PubMed]
  4. T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
    [CrossRef]
  5. R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
    [CrossRef]
  6. Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).
  7. B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
    [CrossRef]
  8. K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
    [CrossRef]
  9. T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
    [CrossRef]
  10. G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
    [CrossRef]
  11. R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum Electron. QE-19, 1443–1451 (1983).
    [CrossRef]
  12. T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
    [CrossRef]
  13. T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1185 (1996).
    [CrossRef] [PubMed]
  14. Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.

1996 (3)

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

T. L. Worchesky, K. J. Ritter, R. Martin, B. Lane, “Large arrays of spatial light modulators hybridized to silicon integrated circuits,” Appl. Opt. 35, 1180–1185 (1996).
[CrossRef] [PubMed]

1995 (1)

T. Minemoto, O. Kim, H. Hiratsuka, “Parallel image processing algorithms based on mathematical morphology using a multiple-imaging system,” Opt. Rev. 2, 352–361 (1995).
[CrossRef]

1990 (1)

1988 (1)

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

1986 (2)

T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
[CrossRef] [PubMed]

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

1983 (1)

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum Electron. QE-19, 1443–1451 (1983).
[CrossRef]

1978 (1)

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

1976 (1)

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

1965 (1)

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

1963 (1)

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
[CrossRef]

Bitou, Y.

Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.

Bottka, N.

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

Bozler, C. O.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Chang, W. S. C.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Efron, U.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Fukui, M.

Hiratsuka, H.

T. Minemoto, O. Kim, H. Hiratsuka, “Parallel image processing algorithms based on mathematical morphology using a multiple-imaging system,” Opt. Rev. 2, 352–361 (1995).
[CrossRef]

Honda, A.

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

Hsu, T. Y.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Ichioka, Y.

Ishikawa, J.

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Kim, O.

T. Minemoto, O. Kim, H. Hiratsuka, “Parallel image processing algorithms based on mathematical morphology using a multiple-imaging system,” Opt. Rev. 2, 352–361 (1995).
[CrossRef]

Kingston, R. H.

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum Electron. QE-19, 1443–1451 (1983).
[CrossRef]

Lane, B.

Leonberger, F. J.

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum Electron. QE-19, 1443–1451 (1983).
[CrossRef]

Martin, R.

Minemoto, T.

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

T. Minemoto, O. Kim, H. Hiratsuka, “Parallel image processing algorithms based on mathematical morphology using a multiple-imaging system,” Opt. Rev. 2, 352–361 (1995).
[CrossRef]

T. Minemoto, S. Numata, K. Miyamoto, “Optical parallel logic gate using spatial light modulator with the Pockels effect: implementation using three PROM devices,” Appl. Opt. 25, 948–955 (1986).
[CrossRef] [PubMed]

Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.

Miyamoto, K.

Mizukawa, H.

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Nakagawa, J.

Nisenson, P.

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

Numata, S.

Osugi, Y.

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Ritter, K. J.

Rossi, J. A.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Seraphin, B. O.

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

Sprague, R. A.

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

Stillman, G. E.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Tanida, J.

Tharmalingam, K.

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
[CrossRef]

Van Eck, T. E.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Walpita, L. M.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Wieder, H. H.

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

Wolte, C. M.

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Worchesky, T. L.

Wu, W. Y.

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

Yagyu, E.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

T. E. Van Eck, L. M. Walpita, W. S. C. Chang, H. H. Wieder, “Franz–Keldysh electrorefraction and electroabsorption in bulk InP and GaAs,” Appl. Phys. Lett. 48, 451–453 (1986).
[CrossRef]

G. E. Stillman, C. M. Wolte, C. O. Bozler, J. A. Rossi, “Electroabsorption in GaAs and its application to waveguide detectors and modulators,” Appl. Phys. Lett. 28, 544–546 (1976).
[CrossRef]

Electron. Lett. (1)

T. Y. Hsu, W. Y. Wu, U. Efron, “Amplitude and phase modulation in a 4-μm-thick GaAs/AlGaAs multiple quantum well modulator,” Electron. Lett. 24, 603–605 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Kingston, F. J. Leonberger, “Fourier transformation using an electroabsorptive CCD spatial light modulator,” IEEE J. Quantum Electron. QE-19, 1443–1451 (1983).
[CrossRef]

Opt. Eng. (1)

R. A. Sprague, P. Nisenson, “The PROM—a status report,” Opt. Eng. 17, 256–266 (1978).
[CrossRef]

Opt. Rev. (2)

T. Minemoto, O. Kim, H. Hiratsuka, “Parallel image processing algorithms based on mathematical morphology using a multiple-imaging system,” Opt. Rev. 2, 352–361 (1995).
[CrossRef]

T. Minemoto, Y. Osugi, H. Mizukawa, J. Ishikawa, “Effect of dynamic range input image on performance of binary subtracted joint transform correlator,” Opt. Rev. 3, 505–511 (1996).
[CrossRef]

Optics (1)

Y. Osugi, A. Honda, T. Minemoto, “A Bi12SiO20 spatial light modulator for coherent light,” Optics 25, 48–54 (1996) (in Japanese).

Phys. Rev. (2)

B. O. Seraphin, N. Bottka, “Franz–Keldysh effect of the refractive index in semiconductors,” Phys. Rev. 139, 560–565 (1965).
[CrossRef]

K. Tharmalingam, “Optical absorption in the presence of a uniform field,” Phys. Rev. 130, 2204–2207 (1963).
[CrossRef]

Other (1)

Y. Bitou, T. Minemoto, “Fast response PROM using GaAs single crystal,” in Spatial Light Modulators, Vol. 14 of Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 147–154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Structure of the device.

Fig. 2
Fig. 2

Example of the time variation of the transmitted-light intensity I o . The upper and lower traces show the applied ac voltage V a = 4 kV at f = 500 Hz and I o , respectively.

Fig. 3
Fig. 3

Absorption-coefficient changes Δα in GaAs.

Fig. 4
Fig. 4

Dependence of the optical transmission on the wavelength under no applied electric field.

Fig. 5
Fig. 5

Optical setup for SLM operation. L1 and L2 are lenses.

Fig. 6
Fig. 6

Sequential diagrams of the applied ac voltage and illumination by the erasing, write-in, and readout lights.

Fig. 7
Fig. 7

Dependence of the optical transmission ratio T on the erasing-light intensity I e . These results were obtained under conditions of no write-in light pulses at V a = 4 kV and f = 500 Hz.

Fig. 8
Fig. 8

Optical transmission ratio T as a function of the amplitude V a of the applied ac voltage under conditions of a uniform erasing light I e = 5 mW/cm2 and no write-in-light pulses.

Fig. 9
Fig. 9

Readout signal under (a) no applied ac voltage, (b) applied ac voltage with V a = 4 kV and f = 500 Hz, and (c) the same applied ac voltage as (b) under synchronously intermittent write-in-light pulses I w = 3 mW/cm2. The upper traces in (a) and (b) show waveforms of externally applied ac voltages. The upper trace in (c) shows the write-in-light pulses. The lower traces in (a)–(c) show the readout signals. There was illumination by a uniform erasing light in (b) and (c).

Fig. 10
Fig. 10

Sensitivity curves of the device: optical transmission ratio T versus the write-in-light pulse intensity I w . The experimental results at f = 250, 500 Hz are shown by the filled and open circles, respectively.

Fig. 11
Fig. 11

Dependence of the optical transmission ratio T on the readout-light pulse energy. The results were obtained by measurement under conditions of a uniform erasing light and no write-in light. The readout-light wavelength was 898 nm, and its FWHM was 18 nm.

Fig. 12
Fig. 12

Example of a readout image.

Fig. 13
Fig. 13

Sensitivity curves: the optical transmission ratio T′ versus the write-in-light intensity in the refraction mode.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I o     I in   exp - 0 L   α E d x ,
T = I o E I o 0 = exp - 0 L   Δ α E d x ,
Δ α E = α E - α 0 .
Δ α E = - ln T / L .
T = exp - 2   0 L   Δ α E d x = T 2 .

Metrics