Abstract

The capacity to use differing read and write wavelengths for reconstructing volume holograms recorded in a shift-multiplexing geometry is analyzed and realized for M-type volume holograms recorded on bacteriorhodopsin films. The intensity distribution in the reconstructed wave is calculated as a function of the parameters of the recording and readout beams. Optimal recording and retrieving geometries, as well as a precise method for tuning the readout setup, are suggested.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with a spherical reference beam,” Appl. Opt. 35, 2403–2417 (1996).
    [CrossRef] [PubMed]
  2. H. C. Kulich, “Reconstructing volume holograms without image field losses,” Appl. Opt. 30, 2850–2857 (1991).
    [CrossRef] [PubMed]
  3. G. Barbastathis, D. Psaltis, “Shift multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21, 4432–434 (1996).
    [CrossRef]
  4. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
  5. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 271.
  6. D. T. Smithey, W. C. Babcock, J. Millerd, “Holographic data storage using thick bacteriorhodopsin recording materials,” in International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 407–409.

1996 (2)

G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with a spherical reference beam,” Appl. Opt. 35, 2403–2417 (1996).
[CrossRef] [PubMed]

G. Barbastathis, D. Psaltis, “Shift multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21, 4432–434 (1996).
[CrossRef]

1991 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Babcock, W. C.

D. T. Smithey, W. C. Babcock, J. Millerd, “Holographic data storage using thick bacteriorhodopsin recording materials,” in International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 407–409.

Barbastathis, G.

G. Barbastathis, D. Psaltis, “Shift multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21, 4432–434 (1996).
[CrossRef]

G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with a spherical reference beam,” Appl. Opt. 35, 2403–2417 (1996).
[CrossRef] [PubMed]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 271.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 271.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Kulich, H. C.

Levene, M.

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 271.

Millerd, J.

D. T. Smithey, W. C. Babcock, J. Millerd, “Holographic data storage using thick bacteriorhodopsin recording materials,” in International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 407–409.

Psaltis, D.

G. Barbastathis, D. Psaltis, “Shift multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21, 4432–434 (1996).
[CrossRef]

G. Barbastathis, M. Levene, D. Psaltis, “Shift multiplexing with a spherical reference beam,” Appl. Opt. 35, 2403–2417 (1996).
[CrossRef] [PubMed]

Smithey, D. T.

D. T. Smithey, W. C. Babcock, J. Millerd, “Holographic data storage using thick bacteriorhodopsin recording materials,” in International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 407–409.

Appl. Opt. (2)

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Opt. Lett. (1)

G. Barbastathis, D. Psaltis, “Shift multiplexed holographic memory using the two-lambda method,” Opt. Lett. 21, 4432–434 (1996).
[CrossRef]

Other (2)

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, New York, 1971), p. 271.

D. T. Smithey, W. C. Babcock, J. Millerd, “Holographic data storage using thick bacteriorhodopsin recording materials,” in International Symposium on Optical Memory and Optical Data Storage, Vol. 12 of OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1996), pp. 407–409.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry of the recording and readout rays. Here t and T denote the transparency and its scaled Fourier transform, respectively, i represents the reconstructed image, and OF denotes the optical fiber.

Fig. 2
Fig. 2

Normalized DE of H(0, 0) versus the hologram plane position for various values of the parameter c.

Fig. 3
Fig. 3

Normalized DE for cases (x 1, y 1) = (7, 10), (x 2, y 2) = (6.5, 10) (plot 1), (8, 10) (plot 2), (5, 10) (plot 3).

Fig. 4
Fig. 4

Normalized DE of elemental holograms with various values of r versus the hologram plane position.

Fig. 5
Fig. 5

Photographs of transparency t from hologram H and the corresponding plots of reconstructed beams from two elemental holograms, H(r = 0) (upper traces) and H(r = 1 mm) (lower traces), in the exit plane of hologram H for (a) Q = 100, (b) Q = 300, and (c) Q = 750.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ i x ,   y = arctan x i - x y i - y ,     i = 1 ,   2 ,   3 .
θ Bragg x ,   y = arcsin λ 1 λ 2 sin θ 1 x ,   y - θ 2 x ,   y 2 + θ 1 x ,   y + θ 2 x ,   y 2 ,
δ Bragg x ,   y = θ Bragg x ,   y - θ 3 x ,   y .
y 3 = c   cos θ Bragg 0 ,   0 cos θ Bragg c ,   0 sin θ Bragg 0 ,   0 - θ Bragg c ,   0 ] , x 3 = y 3 tan θ Bragg 0 ,   0 .
η = exp - α d c s × exp - i ξ exp i ξ 2 + ν 2 0.5 - exp - i ξ 2 + ν 2 0.5 2 1 + ξ 2 ν 2 0.5 2 ,
η η 0 = ν 2 sinc 2 π - 1 ν 2 + k δ Bragg 2 x ,   y 0.5 .
r = 0.61 λ 1 D h

Metrics