Abstract

We measured the optical properties on samples of rat liver tissue before and after laser-induced thermotherapy performed in vivo with Nd:YAG laser irradiation. This made it possible to monitor not only the influence of coagulation on the scattering properties but also the influence of damages to vessels and heat-induced damage to blood on the absorption properties. An experimental integrating-sphere arrangement was modified to allow the determination of the g factor and the absorption and scattering coefficients versus the wavelength in the 600–1050-nm spectral region, with the use of a spectrometer and a CCD camera. The results show a relative decrease in the g factor of on average 21 ± 7% over the entire spectral range following thermotherapy, and a corresponding relative increase in the scattering and absorption coefficients of 23 ± 8% and 200 ± 100%, respectively. An increase of on average 200 ± 80% was consequently found for the reduced scattering coefficient. The cause of these changes in terms of the Mie-equivalent average radius of tissue scatterers as well as of the distribution and biochemistry of tissue absorbers was analyzed, utilizing the information yielded by the g factor and the spectral shapes of the reduced scattering and absorption coefficients. These results were correlated with the alterations in the ultrastructure found in the histological evaluation. The average radius of tissue scattering centers, determined by using either the g factors calculated on the basis of Mie theory or the spectral shape of reduced scattering coefficients calculated on the Mie theory, was estimated to be 21–32% lower in treated than in untreated liver samples. The Mie-equivalent average radii of scattering centers in untreated liver tissue deduced by the two methods corresponded well and were found to be 0.31 and 0.29 μm, respectively, yielding particle sizes in the same range as the size of a mitochondrion.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. QE-20, 1471–1481 (1984).
    [CrossRef]
  2. S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
    [CrossRef]
  3. M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
    [CrossRef] [PubMed]
  4. W. Verkruysse, J. W. Pickering, J. F. Beek, M. Keijzer, M. J. C. van Gemert, “Modelling the effect of wavelength on the pulsed dye laser treatment of port wine stains,” Appl. Opt. 32, 393–398 (1993).
    [CrossRef] [PubMed]
  5. C. Sturesson, S. Andersson-Engels, “A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications,” Phys. Med. Biol. 40, 2037–2052 (1995).
    [CrossRef] [PubMed]
  6. S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
    [PubMed]
  7. S. Rastegar, M. Motamedi, “A theoretical analysis of dynamic variation of temperature dependent optical properties in the response of laser irradiated tissue,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 253–259 (1990).
  8. S. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 2–11 (1990).
  9. G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 mm,” Lasers Surg. Med. 10, 28–34 (1990).
    [CrossRef]
  10. S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
    [CrossRef]
  11. J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
    [CrossRef] [PubMed]
  12. I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of human aorta,” Appl. Opt. 32, 477–487 (1993).
    [CrossRef] [PubMed]
  13. J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
    [CrossRef] [PubMed]
  14. R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
    [CrossRef] [PubMed]
  15. A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
    [CrossRef] [PubMed]
  16. L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).
  17. A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
    [CrossRef] [PubMed]
  18. J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am. 9, 621–631 (1992).
    [CrossRef]
  19. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  20. A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
    [CrossRef]
  21. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
    [CrossRef] [PubMed]
  22. L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” Report (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).
  23. P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
    [CrossRef] [PubMed]
  24. J. R. Zijp, J. J. ten Bosch, “Pascal program to perform Mie calculations,” Opt. Eng. 32, 1691–1695 (1993).
    [CrossRef]
  25. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
    [CrossRef] [PubMed]
  26. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  27. W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
    [CrossRef] [PubMed]
  28. B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).
    [CrossRef] [PubMed]
  29. S. Bosman, “Heat-induced structural alterations in myocardium in relation to changing optical properties,” Appl. Opt. 32, 461–463 (1993).
    [CrossRef] [PubMed]

1997 (2)

A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

1996 (3)

W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
[CrossRef] [PubMed]

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

1995 (2)

C. Sturesson, S. Andersson-Engels, “A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications,” Phys. Med. Biol. 40, 2037–2052 (1995).
[CrossRef] [PubMed]

A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
[CrossRef] [PubMed]

1994 (2)

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).
[CrossRef] [PubMed]

1993 (6)

1992 (2)

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am. 9, 621–631 (1992).
[CrossRef]

1991 (1)

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
[PubMed]

1990 (1)

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 mm,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef]

1989 (2)

1987 (1)

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef]

1984 (1)

A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. QE-20, 1471–1481 (1984).
[CrossRef]

Aarnoudse, J. G.

Agah, R.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Albrecht, H.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Andersson-Engels, S.

A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
[CrossRef] [PubMed]

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

C. Sturesson, S. Andersson-Engels, “A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications,” Phys. Med. Biol. 40, 2037–2052 (1995).
[CrossRef] [PubMed]

A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
[CrossRef] [PubMed]

Beauvoit, B.

B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).
[CrossRef] [PubMed]

Beek, J. F.

Berg, R.

Bigio, I. J.

Blokland, P.

Bogen, D. K.

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 mm,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef]

Bonner, R. F.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Bosman, S.

Boyer, J.

Chance, B.

B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).
[CrossRef] [PubMed]

Cilesiz, I. F.

de Mul, F. F. M.

Derbyshire, G. J.

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 mm,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef]

Dörschel, K.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Flock, S. T.

S. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 2–11 (1990).

Flotte, T.

S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
[CrossRef]

Fuselier, T.

Gandjbakhche, A. H.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Graaff, R.

Greve, J.

Håkansson, C. H.

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

Jacques, S. L.

P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
[CrossRef] [PubMed]

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef]

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” Report (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).

S. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 2–11 (1990).

Jaywant, S.

S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
[CrossRef]

Johnson, T. M.

Keijzer, M.

Kitai, T.

B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).
[CrossRef] [PubMed]

Koelink, M. H.

LeCarpentier, G.

Lilge, L.

S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
[CrossRef]

Lin, W.-C.

Liu, L.

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

Lucassen, G. W.

A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
[CrossRef] [PubMed]

McCulloch, C.

S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
[CrossRef]

Minet, O.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Moes, C. J. M.

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am. 9, 621–631 (1992).
[CrossRef]

Motamedi, M.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
[CrossRef] [PubMed]

M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
[CrossRef] [PubMed]

S. Rastegar, M. Motamedi, “A theoretical analysis of dynamic variation of temperature dependent optical properties in the response of laser irradiated tissue,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 253–259 (1990).

Mourant, J. R.

Müller, G. J.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Nilsson, A. M. K.

A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
[CrossRef] [PubMed]

A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
[CrossRef] [PubMed]

Nishioka, N. S.

Nossal, R.

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

Parsa, P.

Pickering, J. W.

Posthumus, P.

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
[CrossRef] [PubMed]

Prahl, S. A.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am. 9, 621–631 (1992).
[CrossRef]

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef]

Rastegar, S.

M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
[CrossRef] [PubMed]

S. Rastegar, M. Motamedi, “A theoretical analysis of dynamic variation of temperature dependent optical properties in the response of laser irradiated tissue,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 253–259 (1990).

Roggan, A.

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

Sloot, P. M. A.

Sterenborg, H. J. C. M.

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am. 9, 621–631 (1992).
[CrossRef]

Sturesson, C.

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

C. Sturesson, S. Andersson-Engels, “A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications,” Phys. Med. Biol. 40, 2037–2052 (1995).
[CrossRef] [PubMed]

Svanberg, K.

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

Svanberg, S.

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

ten Bosch, J. J.

J. R. Zijp, J. J. ten Bosch, “Pascal program to perform Mie calculations,” Opt. Eng. 32, 1691–1695 (1993).
[CrossRef]

Thomsen, S.

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
[PubMed]

S. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 2–11 (1990).

Unger, M.

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 mm,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

van Gemert, M. J. C.

A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
[CrossRef] [PubMed]

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

W. Verkruysse, J. W. Pickering, J. F. Beek, M. Keijzer, M. J. C. van Gemert, “Modelling the effect of wavelength on the pulsed dye laser treatment of port wine stains,” Appl. Opt. 32, 393–398 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
[CrossRef] [PubMed]

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am. 9, 621–631 (1992).
[CrossRef]

van Wieringen, N.

Verkruysse, W.

A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
[CrossRef] [PubMed]

W. Verkruysse, J. W. Pickering, J. F. Beek, M. Keijzer, M. J. C. van Gemert, “Modelling the effect of wavelength on the pulsed dye laser treatment of port wine stains,” Appl. Opt. 32, 393–398 (1993).
[CrossRef] [PubMed]

Wang, L.

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” Report (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).

Welch, A. J.

Wilson, B. C.

S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
[CrossRef]

Woolsey, J.

S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
[CrossRef]

Zijp, J. R.

Appl. Opt. (11)

M. Motamedi, S. Rastegar, G. LeCarpentier, A. J. Welch, “Light and temperature distribution in laser irradiated tissue: the influence of anisotropic scattering and refractive index,” Appl. Opt. 28, 2230–2237 (1989).
[CrossRef] [PubMed]

P. Parsa, S. L. Jacques, N. S. Nishioka, “Optical properties of rat liver between 350 and 2200 nm,” Appl. Opt. 28, 2325–2330 (1989).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, M. H. Koelink, “Reduced light-scattering properties for mixtures of spherical particles: a simple approximation derived from Mie calculations,” Appl. Opt. 31, 1370–1376 (1992).
[CrossRef] [PubMed]

J. W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J. F. Beek, M. J. C. van Gemert, “Changes in the optical properties (at 632.8 nm) of slowly heated myocardium,” Appl. Opt. 32, 367–371 (1993).
[CrossRef] [PubMed]

W. Verkruysse, J. W. Pickering, J. F. Beek, M. Keijzer, M. J. C. van Gemert, “Modelling the effect of wavelength on the pulsed dye laser treatment of port wine stains,” Appl. Opt. 32, 393–398 (1993).
[CrossRef] [PubMed]

J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
[CrossRef] [PubMed]

S. Bosman, “Heat-induced structural alterations in myocardium in relation to changing optical properties,” Appl. Opt. 32, 461–463 (1993).
[CrossRef] [PubMed]

A. M. K. Nilsson, R. Berg, S. Andersson-Engels, “Measurements of the optical properties of tissue in conjunction with photodynamic therapy,” Appl. Opt. 34, 4609–4619 (1995).
[CrossRef] [PubMed]

W.-C. Lin, M. Motamedi, A. J. Welch, “Dynamics of tissue optics during laser heating of turbid media,” Appl. Opt. 35, 3413–3420 (1996).
[CrossRef] [PubMed]

I. F. Cilesiz, A. J. Welch, “Light dosimetry: effects of dehydration and thermal damage on the optical properties of human aorta,” Appl. Opt. 32, 477–487 (1993).
[CrossRef] [PubMed]

J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997).
[CrossRef] [PubMed]

Biophys. J. (1)

B. Beauvoit, T. Kitai, B. Chance, “Contribution of the mitochondrial compartment to the optical properties of the rat liver: a theoretical and practical approach,” Biophys. J. 67, 2501–2510 (1994).
[CrossRef] [PubMed]

Cancer Lett. (1)

L. Liu, S. Andersson-Engels, C. Sturesson, K. Svanberg, C. H. Håkansson, S. Svanberg, “Tumour vessel damage resulting from laser-induced hyperthermia alone and in combination with photodynamic therapy,” Cancer Lett. 111, 1–9 (1996).

IEEE J. Quantum Electron. (1)

A. J. Welch, “The thermal response of laser irradiated tissue,” IEEE J. Quantum Electron. QE-20, 1471–1481 (1984).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

R. Agah, A. H. Gandjbakhche, M. Motamedi, R. Nossal, R. F. Bonner, “Dynamics of temperature dependent optical properties of tissue: dependence on thermally induced alteration,” IEEE Trans. Biomed. Eng. 43, 839–846 (1996).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. W. Pickering, C. J. M. Moes, H. J. C. M. Sterenborg, S. A. Prahl, M. J. C. van Gemert, “Two integrating sphere with an intervening scattering sample,” J. Opt. Soc. Am. 9, 621–631 (1992).
[CrossRef]

Lasers Surg. Med. (3)

S. L. Jacques, S. A. Prahl, “Modeling optical and thermal distribution in tissue during laser irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef]

J. W. Pickering, P. Posthumus, M. J. C. van Gemert, “Continuous measurement of the heat-induced changes in the optical properties (at 1,064 nm) of rat liver,” Lasers Surg. Med. 15, 200–205 (1994).
[CrossRef] [PubMed]

G. J. Derbyshire, D. K. Bogen, M. Unger, “Thermally induced optical property changes in myocardium at 1.06 mm,” Lasers Surg. Med. 10, 28–34 (1990).
[CrossRef]

Opt. Eng. (1)

J. R. Zijp, J. J. ten Bosch, “Pascal program to perform Mie calculations,” Opt. Eng. 32, 1691–1695 (1993).
[CrossRef]

Photochem. Photobiol. (2)

S. Thomsen, “Pathologic analysis of photothermal and photomechanical effects of laser–tissue interactions,” Photochem. Photobiol. 53, 825–835 (1991).
[PubMed]

A. M. K. Nilsson, G. W. Lucassen, W. Verkruysse, S. Andersson-Engels, M. J. C. van Gemert, “Changes in optical properties of human whole blood in vitro due to slow heating,” Photochem. Photobiol. 65, 366–373 (1997).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

C. Sturesson, S. Andersson-Engels, “A mathematical model for predicting the temperature distribution in laser-induced hyperthermia. Experimental evaluation and applications,” Phys. Med. Biol. 40, 2037–2052 (1995).
[CrossRef] [PubMed]

Other (6)

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

A. Roggan, H. Albrecht, K. Dörschel, O. Minet, G. J. Müller, “Experimental setup and Monte-Carlo model for the determination of optical tissue properties in the wavelength range 330–1100 nm,” in Laser Interaction with Hard and Soft Tissue II, H. J. Albrecht, G. P. Delacretaz, T. H. Meier, R. W. Steiner, L. O. Svaasand, M. J. van Gemert, eds., Proc. SPIE2323, 21–36 (1995).
[CrossRef]

L. Wang, S. L. Jacques, “Monte Carlo modeling of light transport in multi-layered tissues in standard C,” Report (Laser Biology Research Laboratory, M. D. Anderson Cancer Center, University of Texas, 1515 Holcombe Boulevard, Houston, Tex., 1992).

S. Rastegar, M. Motamedi, “A theoretical analysis of dynamic variation of temperature dependent optical properties in the response of laser irradiated tissue,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 253–259 (1990).

S. Thomsen, S. L. Jacques, S. T. Flock, “Microscopic correlates of macroscopic optical property changes during thermal coagulation of myocardium,” in Laser–Tissue Interaction, S. L. Jacques, ed., Proc. SPIE1202, 2–11 (1990).

S. Jaywant, B. C. Wilson, L. Lilge, T. Flotte, J. Woolsey, C. McCulloch, “Temperature dependent changes in the optical absorption and scattering spectra of tissues: correlation with ultrastructure,” in Laser–Tissue Interaction IV, S. L. Jacques, A. Katzir, eds., Proc. SPIE1882, 218–229 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup consisting of two arrangements used to determine the optical properties of tissue. The integrating sphere and the narrow beam arrangements share the same light source, a Xe lamp, and the detector, a CCD camera mounted on a spectrometer. Total transmittance and diffuse reflectance spectra could be measured when tissue samples were placed in positions 1 and 2. Collimated transmittance spectra could be acquired when the samples were positioned in position 3.

Fig. 2
Fig. 2

Average spectra of (a) collimated transmittance, (b) total transmittance, and (c) diffuse reflectance, versus the wavelength in the range 600–1050 nm, based on 30 spectra obtained from untreated tissue, 12 spectra from treated peripheral regions, and 15 spectra from treated central regions. The error bars represent the standard deviations evaluated at 825 nm within each group. The standard deviations were found to be approximately the same in the entire spectral region shown.

Fig. 3
Fig. 3

Average spectra of the three optical properties versus the wavelength (600–1050 nm): (a) the g factor, (b) the scattering coefficient, (c) the absorption coefficient. The error bars represent the standard deviations evaluated at 825 nm, which were approximately the same over the entire spectral region shown.

Fig. 4
Fig. 4

Monte Carlo-simulated light fluence of the treatment light (1064 nm) with the average optical properties measured for liver samples before and after completed treatment as input parameters. The results are shown as contour plots versus radius and tissue depth, with the untreated liver sample on the right-hand side and the treated sample on the left.

Fig. 5
Fig. 5

Mie-theory-computed g factors averaged over the wavelength range used (600–1050 nm) versus particle radius represented by rhombic symbols. The dashed curve is the approximation composed of two third-order polynomial fits used to estimate the Mie-equivalent average radius from the measured average g factors. The black lines represent measured mean g factors ± 1 standard deviation and their corresponding Mie-equivalent average radii.

Fig. 6
Fig. 6

Average spectra of the reduced scattering coefficient as a ln–ln plot. The solid black and the grey dashed curves represent average spectra for treated central and peripheral tissue, respectively, and the grey dotted curve the untreated tissue. A linear regression fit was formed to each average spectrum, shown as an adjacent black dashed curve, exhibiting lower slope coefficients for treated tissue (-1.16 and -1.04) than for untreated tissue (-0.87). This indicates a smaller average size of scattering centers in treated tissue.

Fig. 7
Fig. 7

Examples of Mie-computed Q s ′ spectra as ln–ln plots for five particle sizes, revealing lower slope coefficients for smaller particles. All lines were normalized to 0 at 600 nm to illustrate clearly the difference in slope coefficients. Spectra obtained from particles with intermediate size (r = 0.150 and 0.200 μm) are represented by solid black lines to expose the slight divergence from the assumed linear ln(λ) dependence.

Fig. 8
Fig. 8

Deduced slope coefficients from the Q s ′-spectra calculated on the Mie theory, as shown in Fig. 7, corresponding to the wavelength exponent n versus the particle radius. A mathematical fit was deduced, composed of two polynomials of the third order, and is represented by the dashed curve. The slight hump in the range r = 0.15–0.20 μm can be explained by an overestimation of the wavelength exponent, as the linear regression fit is not optimal for these intermediate-sized particles, as shown in Fig. 7.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R λ = R BS λ × I R λ / I ref λ ,
T λ = I T λ / I ref λ ,
I col λ = I 0 λ / T ND λ exp - μ a λ + μ s λ d ,
μ s λ = k λ n ,
ln μ s λ = ln k + n   ln λ ,
Q s λ n ,
μ s = NAQ s ,
g = - 105.41 r 3 + 43.798 r 2 - 1.2922 r + 0.0108 r 0.20   μ m ,
g = 4.7171 r 3 - 7.5211 r 2 + 4.2136 r + 0.0996 0.20   <   r     0.60   μ m .
n = - 1109.5 r 3 + 341.67 r 2 - 9.3696 r - 3.9359 r < 0.23   μ m ,
n = 23.909 r 3 - 37.218 r 2 + 19.534 r - 3.965 0.23 4 < 0.60   μ m .

Metrics