Abstract

Extended ultraviolet (EUV) emission characteristics of a laser-produced lithium plasma are determined with regard to the requirements of x-ray photoelectron spectroscopy. The main features of interest are spectral distribution, photon flux, bandwidth, source size, and emission duration. Laser-produced lithium plasmas are characterized as emitters of intense narrow-band EUV radiation. It can be estimated that the lithium Lyman-α line emission in combination with an ellipsoidal silicon/molybdenum multilayer mirror is a suitable EUV source for an x-ray photoelectron spectroscopy microscope with a 50-meV energy resolution and a 10-μm lateral resolution.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  2. R. Lebert, W. Neff, D. Rothweiler, “Pinch plasma source for x-ray microscopy with nanosecond exposure time,” J. X-Ray Sci. Technol. 6, 107–140 (1996).
    [CrossRef]
  3. H. Kondo, T. Tomie, H. Shimizu, “Time of flight photoelectron spectroscopy with a laser-plasma x-ray source,” Appl. Phys. Lett. 69, 182–184 (1996).
    [CrossRef]
  4. N. M. Ceglio, A. M. Hawryluk, G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 32, 7050–7056 (1993).
    [CrossRef] [PubMed]
  5. W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
    [CrossRef]
  6. F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
    [CrossRef]
  7. F. Jin, M. Richardson, “New laser plasma source for extreme-ultraviolet lithography,” Appl. Opt. 34, 5750–5760 (1995).
    [CrossRef] [PubMed]
  8. R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
    [CrossRef]
  9. A. V. Vinogradov, V. N. Shlyaptsev, “Characteristics of a laser plasma x-ray source (review),” Sov. J. Quantum Electron. 17, 1–13 (1987).
    [CrossRef]
  10. M. Cardona, Photoemission in Solids I + II (Springer-Verlag, Berlin, 1979).
  11. W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
    [CrossRef]
  12. Yagmaster YM 1200, Lumonics, Kanata, Ontario, K2K 1Y3.
  13. C. L. M. Ireland, “Gas breakdown by single, 40 ps - 50 ns, 1.06 μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
    [CrossRef]
  14. W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993).
    [CrossRef]
  15. G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
    [CrossRef]
  16. Grazing-incidence gold grating, 1200 lines/mm and a focal length of 235 mm, Hitachi Ltd., Tokyo, Japan.
  17. Two-meter grazing-incidence spectrograph E 580, grating 1152 lines/mm, Hilger & Watts Ltd., London, England.
  18. Q2-plate, Ilford Photo, Paramus, New York 07653.
  19. Semiconductor diodes; type S1722-02 used for EUV radiation and type S1188-06 used for laser radiation, Hamamatsu Photonics K. K., Hamamatsu City, Japan.
  20. Condensor zone plate KZP 4 manufactured by Forschungseinrichtung Röntgenphysik, Universität Göttingen, Germany.
  21. R. Hilkenbach, J. Thieme, P. Guttmann, B. Niemann, “Phase zone plates for the Göttingen x-ray microscopes,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 95–101.
  22. Multilayer mirror manufactured by Lehrstuhl für Molekül und Oberflächenphysik, Universität Bielefeld, Germany.
  23. A. G. Michette, Optical Systems for Soft X Rays (Plenum, New York, 1986).
    [CrossRef]
  24. G. Schriever, K. Bergmann, R. Lebert, “Narrowband laser produced EUV sources adapted to Si/Mo multilayer optics,” J. Appl. Phys. (to be published).
  25. H. Puell, “Heating of laser produced plasmas generated at plane solid targets,” Z. Naturforsch. A 25, 1807–1815 (1970).
  26. R. W. Holz, “Konzeption, realisierung und optimierung einer plasmaröntgenquelle für ein labormikroskop,” Ph.D. dissertation (Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992).
  27. J. H. Underwood, T. W. Barbee, “Layered synthetic microstructures as Bragg diffractors for x-rays and extreme ultraviolet: theory and predicted performance,” Appl. Opt. 20, 3027–3034 (1981).
    [CrossRef] [PubMed]

1997

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

1996

R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
[CrossRef]

R. Lebert, W. Neff, D. Rothweiler, “Pinch plasma source for x-ray microscopy with nanosecond exposure time,” J. X-Ray Sci. Technol. 6, 107–140 (1996).
[CrossRef]

H. Kondo, T. Tomie, H. Shimizu, “Time of flight photoelectron spectroscopy with a laser-plasma x-ray source,” Appl. Phys. Lett. 69, 182–184 (1996).
[CrossRef]

1995

1994

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

1993

N. M. Ceglio, A. M. Hawryluk, G. E. Sommargren, “Front-end design issues in soft-x-ray projection lithography,” Appl. Opt. 32, 7050–7056 (1993).
[CrossRef] [PubMed]

W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993).
[CrossRef]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

1991

W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
[CrossRef]

1987

A. V. Vinogradov, V. N. Shlyaptsev, “Characteristics of a laser plasma x-ray source (review),” Sov. J. Quantum Electron. 17, 1–13 (1987).
[CrossRef]

1981

1974

C. L. M. Ireland, “Gas breakdown by single, 40 ps - 50 ns, 1.06 μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
[CrossRef]

1970

H. Puell, “Heating of laser produced plasmas generated at plane solid targets,” Z. Naturforsch. A 25, 1807–1815 (1970).

Barbee, T. W.

Bastiaensen, R.

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

Bergmann, K.

R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
[CrossRef]

G. Schriever, K. Bergmann, R. Lebert, “Narrowband laser produced EUV sources adapted to Si/Mo multilayer optics,” J. Appl. Phys. (to be published).

Bijkerk, F.

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

Cardona, M.

M. Cardona, Photoemission in Solids I + II (Springer-Verlag, Berlin, 1979).

Ceglio, N. M.

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Eidmann, K.

W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993).
[CrossRef]

W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
[CrossRef]

Engel, A.

R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
[CrossRef]

Engel, W.

W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Guttmann, P.

R. Hilkenbach, J. Thieme, P. Guttmann, B. Niemann, “Phase zone plates for the Göttingen x-ray microscopes,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 95–101.

Hawryluk, A. M.

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Hilkenbach, R.

R. Hilkenbach, J. Thieme, P. Guttmann, B. Niemann, “Phase zone plates for the Göttingen x-ray microscopes,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 95–101.

Holz, R. W.

R. W. Holz, “Konzeption, realisierung und optimierung einer plasmaröntgenquelle für ein labormikroskop,” Ph.D. dissertation (Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992).

Ireland, C. L. M.

C. L. M. Ireland, “Gas breakdown by single, 40 ps - 50 ns, 1.06 μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
[CrossRef]

Jin, F.

Kondo, H.

H. Kondo, T. Tomie, H. Shimizu, “Time of flight photoelectron spectroscopy with a laser-plasma x-ray source,” Appl. Phys. Lett. 69, 182–184 (1996).
[CrossRef]

Kordesch, M. E.

W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
[CrossRef]

Kraft, S.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

Kubala, S.

W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
[CrossRef]

Lebert, R.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
[CrossRef]

R. Lebert, W. Neff, D. Rothweiler, “Pinch plasma source for x-ray microscopy with nanosecond exposure time,” J. X-Ray Sci. Technol. 6, 107–140 (1996).
[CrossRef]

W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
[CrossRef]

G. Schriever, K. Bergmann, R. Lebert, “Narrowband laser produced EUV sources adapted to Si/Mo multilayer optics,” J. Appl. Phys. (to be published).

Mager, S.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

Michette, A. G.

A. G. Michette, Optical Systems for Soft X Rays (Plenum, New York, 1986).
[CrossRef]

Naweed, A.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

Neff, W.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
[CrossRef]

R. Lebert, W. Neff, D. Rothweiler, “Pinch plasma source for x-ray microscopy with nanosecond exposure time,” J. X-Ray Sci. Technol. 6, 107–140 (1996).
[CrossRef]

W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
[CrossRef]

Niemann, B.

R. Hilkenbach, J. Thieme, P. Guttmann, B. Niemann, “Phase zone plates for the Göttingen x-ray microscopes,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 95–101.

Platonov, Y. Y.

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

Puell, H.

H. Puell, “Heating of laser produced plasmas generated at plane solid targets,” Z. Naturforsch. A 25, 1807–1815 (1970).

Richardson, M.

Richardson, M. C.

W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993).
[CrossRef]

Richter, F.

W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
[CrossRef]

Rotermund, H. H.

W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
[CrossRef]

Rothweiler, D.

R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
[CrossRef]

R. Lebert, W. Neff, D. Rothweiler, “Pinch plasma source for x-ray microscopy with nanosecond exposure time,” J. X-Ray Sci. Technol. 6, 107–140 (1996).
[CrossRef]

W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
[CrossRef]

Scholze, F.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

Schriever, G.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

G. Schriever, K. Bergmann, R. Lebert, “Narrowband laser produced EUV sources adapted to Si/Mo multilayer optics,” J. Appl. Phys. (to be published).

Schwanda, W.

W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993).
[CrossRef]

Shevelko, A. P.

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

Shimizu, H.

H. Kondo, T. Tomie, H. Shimizu, “Time of flight photoelectron spectroscopy with a laser-plasma x-ray source,” Appl. Phys. Lett. 69, 182–184 (1996).
[CrossRef]

Shlyaptsev, V. N.

A. V. Vinogradov, V. N. Shlyaptsev, “Characteristics of a laser plasma x-ray source (review),” Sov. J. Quantum Electron. 17, 1–13 (1987).
[CrossRef]

Shmaenok, L.

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

Sommargren, G. E.

Thieme, J.

R. Hilkenbach, J. Thieme, P. Guttmann, B. Niemann, “Phase zone plates for the Göttingen x-ray microscopes,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 95–101.

Tomie, T.

H. Kondo, T. Tomie, H. Shimizu, “Time of flight photoelectron spectroscopy with a laser-plasma x-ray source,” Appl. Phys. Lett. 69, 182–184 (1996).
[CrossRef]

Ulm, G.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

Underwood, J. H.

van Honk, A.

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

Vinogradov, A. V.

A. V. Vinogradov, V. N. Shlyaptsev, “Characteristics of a laser plasma x-ray source (review),” Sov. J. Quantum Electron. 17, 1–13 (1987).
[CrossRef]

von Oertzen, A.

W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
[CrossRef]

Winhart, G.

W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Kondo, T. Tomie, H. Shimizu, “Time of flight photoelectron spectroscopy with a laser-plasma x-ray source,” Appl. Phys. Lett. 69, 182–184 (1996).
[CrossRef]

At. Data Nucl. Data Tables

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

J. Phys. D

C. L. M. Ireland, “Gas breakdown by single, 40 ps - 50 ns, 1.06 μm laser pulses,” J. Phys. D 7, L179–L183 (1974).
[CrossRef]

J. Phys. III (France)

F. Bijkerk, L. Shmaenok, A. van Honk, R. Bastiaensen, Y. Y. Platonov, A. P. Shevelko, “Laser plasma sources for soft x-ray projection lithography,” J. Phys. III (France) 4, 1669–1677 (1994).
[CrossRef]

J. X-Ray Sci. Technol.

W. Schwanda, K. Eidmann, M. C. Richardson, “Characterization of a flat-field grazing-incidence XUV spectrometer,” J. X-Ray Sci. Technol. 4, 8–17 (1993).
[CrossRef]

R. Lebert, W. Neff, D. Rothweiler, “Pinch plasma source for x-ray microscopy with nanosecond exposure time,” J. X-Ray Sci. Technol. 6, 107–140 (1996).
[CrossRef]

Opt. Quantum Electron.

R. Lebert, D. Rothweiler, A. Engel, K. Bergmann, W. Neff, “Pinch plasmas as intense EUV sources for laboratory applications,” Opt. Quantum Electron. 28, 241–259 (1996).
[CrossRef]

Rev. Sci. Instrum.

G. Schriever, R. Lebert, A. Naweed, S. Mager, W. Neff, S. Kraft, F. Scholze, G. Ulm, “Calibration of CCDs and of a pinhole transmission grating to be used as elements of a soft x-ray spectrograph,” Rev. Sci. Instrum. 68, 3301–3306 (1997).
[CrossRef]

Sov. J. Quantum Electron.

A. V. Vinogradov, V. N. Shlyaptsev, “Characteristics of a laser plasma x-ray source (review),” Sov. J. Quantum Electron. 17, 1–13 (1987).
[CrossRef]

Ultramicroscopy

W. Engel, M. E. Kordesch, H. H. Rotermund, S. Kubala, A. von Oertzen, “A UHV-compatible photoelectron emission microscope for applications in surface science,” Ultramicroscopy 36, 148–153 (1991).
[CrossRef]

Z. Naturforsch. A

H. Puell, “Heating of laser produced plasmas generated at plane solid targets,” Z. Naturforsch. A 25, 1807–1815 (1970).

Other

R. W. Holz, “Konzeption, realisierung und optimierung einer plasmaröntgenquelle für ein labormikroskop,” Ph.D. dissertation (Rheinisch Westfälische Technische Hochschule, Aachen, Germany, 1992).

Yagmaster YM 1200, Lumonics, Kanata, Ontario, K2K 1Y3.

M. Cardona, Photoemission in Solids I + II (Springer-Verlag, Berlin, 1979).

Grazing-incidence gold grating, 1200 lines/mm and a focal length of 235 mm, Hitachi Ltd., Tokyo, Japan.

Two-meter grazing-incidence spectrograph E 580, grating 1152 lines/mm, Hilger & Watts Ltd., London, England.

Q2-plate, Ilford Photo, Paramus, New York 07653.

Semiconductor diodes; type S1722-02 used for EUV radiation and type S1188-06 used for laser radiation, Hamamatsu Photonics K. K., Hamamatsu City, Japan.

Condensor zone plate KZP 4 manufactured by Forschungseinrichtung Röntgenphysik, Universität Göttingen, Germany.

R. Hilkenbach, J. Thieme, P. Guttmann, B. Niemann, “Phase zone plates for the Göttingen x-ray microscopes,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, eds. (Springer-Verlag, Berlin, 1988), pp. 95–101.

Multilayer mirror manufactured by Lehrstuhl für Molekül und Oberflächenphysik, Universität Bielefeld, Germany.

A. G. Michette, Optical Systems for Soft X Rays (Plenum, New York, 1986).
[CrossRef]

G. Schriever, K. Bergmann, R. Lebert, “Narrowband laser produced EUV sources adapted to Si/Mo multilayer optics,” J. Appl. Phys. (to be published).

W. Neff, D. Rothweiler, K. Eidmann, R. Lebert, F. Richter, G. Winhart, “Laser and pinch plasma x-ray sources for microscopy and lithography,” in Applications of Laser Plasma Radiation, M. C. Richardson, ed., Proc. SPIE2015, 32–44 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

X-ray photoelectron spectrometer with LPP as the EUV radiation source.

Fig. 2
Fig. 2

Calculated transmission of a beryllium filter with a 2-μm thickness.

Fig. 3
Fig. 3

Imaging system for determination of the source size, using a zone plate as the transmission lens with a wavelength-dependent focal length.

Fig. 4
Fig. 4

Emission spectrum of a lithium LPP.

Fig. 5
Fig. 5

Number of emitted photons in the lithium Lyman-α line at 13.5 nm of a lithium LPP with a 60-μm diameter and with dependence on the laser intensity.

Fig. 6
Fig. 6

Conversion efficiency of the lithium Lyman-α line emission with dependence on the laser intensity.

Fig. 7
Fig. 7

Emission spectrum of the Lyman-α line of a lithium LPP spectrum in (a) first and (b) second order.

Fig. 8
Fig. 8

Semiconductor diode signals for laser radiation and EUV radiation.

Fig. 9
Fig. 9

Zone plate image of the lithium LPP for a wavelength of 13.5 nm (Lyman-α line).

Fig. 10
Fig. 10

Diameter of the lithium LPP emission imaged at a 13.5-nm wavelength with dependence on the laser pulse energy.

Fig. 11
Fig. 11

Emission spectrum of a gold LPP in front of and behind a Si/Mo multilayer mirror on logarithmic scale.

Fig. 12
Fig. 12

Emission spectrum of a lithium LPP behind a Si/Mo multilayer mirror on logarithmic scale.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Te=2.85×10-4eV I4/9Wcm2-4/9.
λΔλ=0.9 mRsg λ,
λΔλ2ndorder = 2λΔλ1storder.

Metrics