Abstract

We show that a crystalline LiNbO3 grism and a hybrid grism made of a LiNbO3 transmission grating and a ZnS prism can be new and powerful dispersing elements with refractive indices high enough to realize high spectral resolution for visible to near-infrared astronomical spectrographs with transmission optics. We describe the basic principle and the limitation to minimizing the spectral separation that is due to the inherent birefringence of such an optically anisotropic crystal used for grisms.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. G. Robinson, J. E. Simmons, A. S. Brar, A. M. Fowler, “Cryogenically cooled detector system for spectroscopic application of solid-state arrays,” in Cryogenically cooled sensor technology, R. J. Huppi, ed., Proc. SPIE245, 14–33 (1980).
    [CrossRef]
  2. D. Enard, B. Delabre, “Two design approaches for high efficiency low resolution spectroscopy,” in Instrumentation in Astronomy V, D. L. Crawford, ed., Proc. SPIE445, 522–529 (1982).
    [CrossRef]
  3. J. C. Geary, J. P. Huchra, D. W. Latham, “A faint-object grism spectrograph with multiple slits and CCD detector,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 509–516 (1986).
    [CrossRef]
  4. K. Kudo, “Optical properties of plane-grating monochromater,” J. Opt. Soc. Am. 55, 150–161 (1965).
    [CrossRef]
  5. W. Furting, W. Seifert, “A set of grism for FORS,” in 3D Optical Spectroscopic Methods in Astronomy, M. Comte, M. Marcelin , eds., Am. Soc. Phys. Conf. Ser.71, 27–28 (1995).
  6. L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
    [CrossRef]
  7. W. A. Rense, “Techniques for rocket solar UV and for UV spectroscopy,” Space Sci. Rev. 9, 234–264 (1966).
  8. Y. Aoyagi, S. Namba, “Blazed ion-etched holographic gratings,” Opt. Acta 23, 701–707 (1976).
    [CrossRef]
  9. H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
    [CrossRef]
  10. M. Iye, “Instrumentation plans proposed for the Japan National Large Telescope (JNLT),” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 153–162 (1994).
    [CrossRef]
  11. T. Sasaki, M. Iye, T. Yamashita, T. Shibata, “Faint object camera and spectrograph for the 8m SUBARU telescope,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 322–328 (1994).
    [CrossRef]
  12. M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.
  13. M. Iye, M. Tamura, N. Ebizuka, Y. Ito, K. Murakawa, “Coronagraphic spectrometer,” in Telescopes of Today and Tomorrow, A. Ardeberg, ed., Proc. SPIE2871, 1365–1372 (1996).
    [CrossRef]
  14. A. M. Prokhorov, Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, New York, 1990), p. 196.
  15. N. Ebizuka, M. Wakaki, Y. Kobayashi, S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34, 7899–7906 (1995).
    [CrossRef] [PubMed]
  16. T. Sasaki, M. Yutani, Y. Shimizu, T. Kurakami, “Okayama Optical Polarimetry and Spectroscopy System (OOPS),” Rep. Natl. Astron. Obs. Jpn. 2, 545–566 (1995).
  17. M. Neviere, “Electromagnetic study of transmission gratings,” Appl. Opt. 30, 150–161 (1991).
    [CrossRef]
  18. M. C. Simon, M. T. Garea, “Plane parallel birefringent plates as polarization interferometers,” Optik 87, 95–102 (1991).

1996 (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

1995 (2)

N. Ebizuka, M. Wakaki, Y. Kobayashi, S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34, 7899–7906 (1995).
[CrossRef] [PubMed]

T. Sasaki, M. Yutani, Y. Shimizu, T. Kurakami, “Okayama Optical Polarimetry and Spectroscopy System (OOPS),” Rep. Natl. Astron. Obs. Jpn. 2, 545–566 (1995).

1992 (1)

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

1991 (2)

M. Neviere, “Electromagnetic study of transmission gratings,” Appl. Opt. 30, 150–161 (1991).
[CrossRef]

M. C. Simon, M. T. Garea, “Plane parallel birefringent plates as polarization interferometers,” Optik 87, 95–102 (1991).

1976 (1)

Y. Aoyagi, S. Namba, “Blazed ion-etched holographic gratings,” Opt. Acta 23, 701–707 (1976).
[CrossRef]

1966 (1)

W. A. Rense, “Techniques for rocket solar UV and for UV spectroscopy,” Space Sci. Rev. 9, 234–264 (1966).

1965 (1)

Aoyagi, Y.

Y. Aoyagi, S. Namba, “Blazed ion-etched holographic gratings,” Opt. Acta 23, 701–707 (1976).
[CrossRef]

Brar, A. S.

W. G. Robinson, J. E. Simmons, A. S. Brar, A. M. Fowler, “Cryogenically cooled detector system for spectroscopic application of solid-state arrays,” in Cryogenically cooled sensor technology, R. J. Huppi, ed., Proc. SPIE245, 14–33 (1980).
[CrossRef]

Cameron, M.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

Delabre, B.

D. Enard, B. Delabre, “Two design approaches for high efficiency low resolution spectroscopy,” in Instrumentation in Astronomy V, D. L. Crawford, ed., Proc. SPIE445, 522–529 (1982).
[CrossRef]

Ebizuka, N.

N. Ebizuka, M. Wakaki, Y. Kobayashi, S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34, 7899–7906 (1995).
[CrossRef] [PubMed]

M. Iye, M. Tamura, N. Ebizuka, Y. Ito, K. Murakawa, “Coronagraphic spectrometer,” in Telescopes of Today and Tomorrow, A. Ardeberg, ed., Proc. SPIE2871, 1365–1372 (1996).
[CrossRef]

Enard, D.

D. Enard, B. Delabre, “Two design approaches for high efficiency low resolution spectroscopy,” in Instrumentation in Astronomy V, D. L. Crawford, ed., Proc. SPIE445, 522–529 (1982).
[CrossRef]

Fowler, A. M.

W. G. Robinson, J. E. Simmons, A. S. Brar, A. M. Fowler, “Cryogenically cooled detector system for spectroscopic application of solid-state arrays,” in Cryogenically cooled sensor technology, R. J. Huppi, ed., Proc. SPIE245, 14–33 (1980).
[CrossRef]

Furting, W.

W. Furting, W. Seifert, “A set of grism for FORS,” in 3D Optical Spectroscopic Methods in Astronomy, M. Comte, M. Marcelin , eds., Am. Soc. Phys. Conf. Ser.71, 27–28 (1995).

Garea, M. T.

M. C. Simon, M. T. Garea, “Plane parallel birefringent plates as polarization interferometers,” Optik 87, 95–102 (1991).

Geary, J. C.

J. C. Geary, J. P. Huchra, D. W. Latham, “A faint-object grism spectrograph with multiple slits and CCD detector,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 509–516 (1986).
[CrossRef]

Genzel, R.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

Hayashi, S.

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

Huchra, J. P.

J. C. Geary, J. P. Huchra, D. W. Latham, “A faint-object grism spectrograph with multiple slits and CCD detector,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 509–516 (1986).
[CrossRef]

Ito, Y.

M. Iye, M. Tamura, N. Ebizuka, Y. Ito, K. Murakawa, “Coronagraphic spectrometer,” in Telescopes of Today and Tomorrow, A. Ardeberg, ed., Proc. SPIE2871, 1365–1372 (1996).
[CrossRef]

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

Iye, M.

M. Iye, M. Tamura, N. Ebizuka, Y. Ito, K. Murakawa, “Coronagraphic spectrometer,” in Telescopes of Today and Tomorrow, A. Ardeberg, ed., Proc. SPIE2871, 1365–1372 (1996).
[CrossRef]

T. Sasaki, M. Iye, T. Yamashita, T. Shibata, “Faint object camera and spectrograph for the 8m SUBARU telescope,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 322–328 (1994).
[CrossRef]

M. Iye, “Instrumentation plans proposed for the Japan National Large Telescope (JNLT),” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 153–162 (1994).
[CrossRef]

Kaifu, N.

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

Kobayashi, Y.

N. Ebizuka, M. Wakaki, Y. Kobayashi, S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34, 7899–7906 (1995).
[CrossRef] [PubMed]

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Krabbe, A.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

Kroker, H.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

Kudo, K.

Kurakami, T.

T. Sasaki, M. Yutani, Y. Shimizu, T. Kurakami, “Okayama Optical Polarimetry and Spectroscopy System (OOPS),” Rep. Natl. Astron. Obs. Jpn. 2, 545–566 (1995).

Kuz’minov, Y. S.

A. M. Prokhorov, Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, New York, 1990), p. 196.

Latham, D. W.

J. C. Geary, J. P. Huchra, D. W. Latham, “A faint-object grism spectrograph with multiple slits and CCD detector,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 509–516 (1986).
[CrossRef]

Murakawa, K.

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

M. Iye, M. Tamura, N. Ebizuka, Y. Ito, K. Murakawa, “Coronagraphic spectrometer,” in Telescopes of Today and Tomorrow, A. Ardeberg, ed., Proc. SPIE2871, 1365–1372 (1996).
[CrossRef]

Namba, S.

Y. Aoyagi, S. Namba, “Blazed ion-etched holographic gratings,” Opt. Acta 23, 701–707 (1976).
[CrossRef]

Neviere, M.

M. Neviere, “Electromagnetic study of transmission gratings,” Appl. Opt. 30, 150–161 (1991).
[CrossRef]

Nishimura, T.

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

Prokhorov, A. M.

A. M. Prokhorov, Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, New York, 1990), p. 196.

Rense, W. A.

W. A. Rense, “Techniques for rocket solar UV and for UV spectroscopy,” Space Sci. Rev. 9, 234–264 (1966).

Robinson, W. G.

W. G. Robinson, J. E. Simmons, A. S. Brar, A. M. Fowler, “Cryogenically cooled detector system for spectroscopic application of solid-state arrays,” in Cryogenically cooled sensor technology, R. J. Huppi, ed., Proc. SPIE245, 14–33 (1980).
[CrossRef]

Sasaki, T.

T. Sasaki, M. Yutani, Y. Shimizu, T. Kurakami, “Okayama Optical Polarimetry and Spectroscopy System (OOPS),” Rep. Natl. Astron. Obs. Jpn. 2, 545–566 (1995).

T. Sasaki, M. Iye, T. Yamashita, T. Shibata, “Faint object camera and spectrograph for the 8m SUBARU telescope,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 322–328 (1994).
[CrossRef]

Sato, S.

N. Ebizuka, M. Wakaki, Y. Kobayashi, S. Sato, “Development of a multichannel Fourier transform spectrometer,” Appl. Opt. 34, 7899–7906 (1995).
[CrossRef] [PubMed]

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Seifert, W.

W. Furting, W. Seifert, “A set of grism for FORS,” in 3D Optical Spectroscopic Methods in Astronomy, M. Comte, M. Marcelin , eds., Am. Soc. Phys. Conf. Ser.71, 27–28 (1995).

Shiba, H.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Shibata, T.

T. Sasaki, M. Iye, T. Yamashita, T. Shibata, “Faint object camera and spectrograph for the 8m SUBARU telescope,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 322–328 (1994).
[CrossRef]

Shimizu, Y.

T. Sasaki, M. Yutani, Y. Shimizu, T. Kurakami, “Okayama Optical Polarimetry and Spectroscopy System (OOPS),” Rep. Natl. Astron. Obs. Jpn. 2, 545–566 (1995).

Simmons, J. E.

W. G. Robinson, J. E. Simmons, A. S. Brar, A. M. Fowler, “Cryogenically cooled detector system for spectroscopic application of solid-state arrays,” in Cryogenically cooled sensor technology, R. J. Huppi, ed., Proc. SPIE245, 14–33 (1980).
[CrossRef]

Simon, M. C.

M. C. Simon, M. T. Garea, “Plane parallel birefringent plates as polarization interferometers,” Optik 87, 95–102 (1991).

Tacconi-Garman, L. E.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

Takami, H.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

Takato, N.

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

Tamura, M.

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

M. Iye, M. Tamura, N. Ebizuka, Y. Ito, K. Murakawa, “Coronagraphic spectrometer,” in Telescopes of Today and Tomorrow, A. Ardeberg, ed., Proc. SPIE2871, 1365–1372 (1996).
[CrossRef]

Thatte, N.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

Wakaki, M.

Weitzel, L.

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

Yamashita, T.

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

T. Sasaki, M. Iye, T. Yamashita, T. Shibata, “Faint object camera and spectrograph for the 8m SUBARU telescope,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 322–328 (1994).
[CrossRef]

Yutani, M.

T. Sasaki, M. Yutani, Y. Shimizu, T. Kurakami, “Okayama Optical Polarimetry and Spectroscopy System (OOPS),” Rep. Natl. Astron. Obs. Jpn. 2, 545–566 (1995).

Appl. Opt. (2)

Astron. Astrophys. Suppl. Ser. (1)

L. Weitzel, A. Krabbe, H. Kroker, N. Thatte, L. E. Tacconi-Garman, M. Cameron, R. Genzel, “3D: The next generation near-infrared imaging spectrometer,” Astron. Astrophys. Suppl. Ser. 119, 531–546 (1996).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Acta (1)

Y. Aoyagi, S. Namba, “Blazed ion-etched holographic gratings,” Opt. Acta 23, 701–707 (1976).
[CrossRef]

Optik (1)

M. C. Simon, M. T. Garea, “Plane parallel birefringent plates as polarization interferometers,” Optik 87, 95–102 (1991).

Publ. Astron. Soc. Pac. (1)

H. Takami, H. Shiba, S. Sato, T. Yamashita, Y. Kobayashi, “A near infrared prism spectrophotopolarimeter,” Publ. Astron. Soc. Pac. 104, 949–954 (1992).
[CrossRef]

Rep. Natl. Astron. Obs. Jpn. (1)

T. Sasaki, M. Yutani, Y. Shimizu, T. Kurakami, “Okayama Optical Polarimetry and Spectroscopy System (OOPS),” Rep. Natl. Astron. Obs. Jpn. 2, 545–566 (1995).

Space Sci. Rev. (1)

W. A. Rense, “Techniques for rocket solar UV and for UV spectroscopy,” Space Sci. Rev. 9, 234–264 (1966).

Other (9)

M. Iye, “Instrumentation plans proposed for the Japan National Large Telescope (JNLT),” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 153–162 (1994).
[CrossRef]

T. Sasaki, M. Iye, T. Yamashita, T. Shibata, “Faint object camera and spectrograph for the 8m SUBARU telescope,” in Instrumentation in Astronomy VIII, D. L. Crawford, E. R. Craine, eds., Proc. SPIE2198, 322–328 (1994).
[CrossRef]

M. Tamura, H. Takami, N. Kaifu, S. Hayashi, N. Takato, T. Nishimura, K. Murakawa, Y. Ito, “Design of a coronagraphic imager with adaptive optics (CIAO) for the Subaru 8-m telescope,” in Scientific and Engineering Frontiers for 8-10m Telescope, M. Iye, T. Nishimura , eds., Frontiers Science Series 14 (Universal Academy Press, Tokyo, 1994), pp. 339–345.

M. Iye, M. Tamura, N. Ebizuka, Y. Ito, K. Murakawa, “Coronagraphic spectrometer,” in Telescopes of Today and Tomorrow, A. Ardeberg, ed., Proc. SPIE2871, 1365–1372 (1996).
[CrossRef]

A. M. Prokhorov, Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Adam Hilger, New York, 1990), p. 196.

W. Furting, W. Seifert, “A set of grism for FORS,” in 3D Optical Spectroscopic Methods in Astronomy, M. Comte, M. Marcelin , eds., Am. Soc. Phys. Conf. Ser.71, 27–28 (1995).

W. G. Robinson, J. E. Simmons, A. S. Brar, A. M. Fowler, “Cryogenically cooled detector system for spectroscopic application of solid-state arrays,” in Cryogenically cooled sensor technology, R. J. Huppi, ed., Proc. SPIE245, 14–33 (1980).
[CrossRef]

D. Enard, B. Delabre, “Two design approaches for high efficiency low resolution spectroscopy,” in Instrumentation in Astronomy V, D. L. Crawford, ed., Proc. SPIE445, 522–529 (1982).
[CrossRef]

J. C. Geary, J. P. Huchra, D. W. Latham, “A faint-object grism spectrograph with multiple slits and CCD detector,” in Instrumentation in Astronomy VI, D. L. Crawford, ed., Proc. SPIE627, 509–516 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of a grism.

Fig. 2
Fig. 2

Rays propagating through a spectrograph with an optically anisotropic crystalline grism: (a) top view of the ray propagation in the plane containing the optical axis of the spectrograph and the entrance slit, (b) side view of the ray propagation in the plane containing the optical axis of the spectrograph and perpendicular to the entrance slit.

Fig. 3
Fig. 3

(a) Schematic representation of the ray propagation through an optically anisotropic crystalline grism, (b) representation of the diffraction at a transmission grating.

Fig. 4
Fig. 4

Spectral separation that is due to the birefringence of a crystalline LiNbO3 grism blazed at 550 nm; the optic axis is parallel to the normal of the incident surface, calculated as a function of the incident beam angle.

Fig. 5
Fig. 5

Schematic representation of the ray propagation through a grism that is made by attaching a transmission grating onto a prism.

Fig. 6
Fig. 6

Doublet emission lines of neon at 638.3 and 640.2 nm as observed with a BK-7 grism, which gives the resolving power of 349 at 639 nm.

Fig. 7
Fig. 7

Doublet emission line of neon at 638.3 and 640.2 nm as observed with a crystalline LiNbO3 grism, which gives the resolving power of 775 at 639 nm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

sin   θ 1 = n o sin   θ o 2 ,
sin   θ 1 = n e θ e 2 sin   θ e 2 ,
n e θ e 2 = n e 2 n o 2 n e 2 cos 2   θ e + n o 2 sin 2   θ e ,
sin 2   θ 1 sin 2   θ e 2 = n e 2 n o 2 n e 2 cos 2   θ e 2 + n o 2 sin 2   θ e 2 , tan 2   θ e 2 = n e 2 sin 2   θ 1 n o 2 n e 2 - sin 2   θ 1 .
m λ = n o d   sin θ o 2 + α - d   sin θ o 3 + α ,
m λ = n e θ e 2 d   sin θ e 2 + α - d   sin θ e 3 + α ,
m λ e = n e θ e 2 d   sin θ e 2 + α - d   sin θ o 3 + α ,
Δ λ = λ - λ e = d n o sin θ o 2 + α - n e θ e 2   sin θ e 2 + α m .
sin   θ 1 = n 2 sin   θ 2 ,
n 2 sin θ 2 + α = n 2   sin θ 2 + α ,
m λ = n 2 d   sin θ 2 + α - d   sin θ 3 + α .
m λ = n 2 d   sin θ 2 + α - d   sin θ 3 + α .
m λ = n 2 d   sin θ 2 + α - d   sin θ o 3 + α ,
m λ = n 2 d   sin θ 2 + α - d   sin θ e 3 + α .

Metrics