Abstract

Birefringence (B f), refractive indices, and their temperature derivatives (dB f/dT) determine the temperature characteristics of nonlinear-optical laser devices. The birefringences at different temperatures are analyzed critically by use of a new physically meaningful Sellmeier equation for what is to the author’s knowledge the first time the birefringences at different operating temperature from 14 to 500 K and wavelength for ZnGeP2 nonlinear crystal have been found. This equation is based on the average electronic absorption gap in the UV region and the lattice absorption gap at the IR region. In this model the fitting accuracy is better than the experimental accuracy of ±0.0001 at different temperatures. The refractive indices are estimated at different temperatures from the room-temperature values, the thermo-optic coefficients, and the smoothed values of birefringence. The Sellmeier coefficients for refractive indices that are used to characterize the currently available nonlinear-optical devices satisfactorily are then evaluated. These optical constants are essential in characterizing the parametric short-pulse generation in the mid-IR region.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
    [CrossRef]
  2. G. D. Boyd, W. B. Gandrud, E. Buehler, “Phase-matched upconversion of 10.6-μm radiation in ZnGeP2,” Appl. Phys. Lett. 18, 446–448 (1971).
    [CrossRef]
  3. G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972).
    [CrossRef]
  4. G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
    [CrossRef]
  5. G. C. Bhar, “Refractive index interpolation in phase matching,” Appl. Opt. 15, 305–307 (1976).
    [CrossRef]
  6. P. G. Schunemann, “Growth and properties of mid-IR nonlinear optical materials,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1997), paper CThG5.
  7. D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
    [CrossRef]
  8. D. W. Fischer, M. C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997); Wright Laboratory, Materials Directorate, 3005 P Street, Suite 6, Wright-Patterson AFB, Ohio 45433-7707 (personal communication, 16July1997).
  9. G. C. Bhar, G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69, 730–733 (1979).
    [CrossRef]
  10. G. C. Bhar, G. Ghosh, “Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2,” IEEE J. Quantum Electron. QE-16, 838–843 (1980).
    [CrossRef]
  11. G. C. Bhar, G. Ghosh, “Dispersion of thermooptic coefficients in nonlinear crystals,” Appl. Opt. 19, 1029–1031 (1980).
    [CrossRef] [PubMed]
  12. G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
    [CrossRef]
  13. G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
    [CrossRef]
  14. Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).
  15. Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).
  16. Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).
  17. K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
    [CrossRef]
  18. K. L. Vodopyanov, V. G. Voevodin, “Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
    [CrossRef]
  19. K. Kato, “Second-harmonic and sum-frequency generation in ZnGeP2,” Appl. Opt. 36, 2506–2510 (1997) and references cited therein.
    [CrossRef] [PubMed]
  20. H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
    [CrossRef]
  21. Landolt-Bornstein, New Series, Group III, Vol. 17, Semiconductors (Springer-Verlag, Berlin, 1985).
  22. G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995);“Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
    [CrossRef]
  23. G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1997).
  24. S. V. Ivanova, V. S. Gorelik, B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalate,” Ferroelectrics 21, 563–564 (1978).
    [CrossRef]
  25. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
    [CrossRef]
  26. M. Quintero, J. Gonzalez, J. C. Wooley, “Optical energy-gap variation and deformation potentials in CuInTe2,” J. Appl. Phys. 70, 1451–1454 (1991).
    [CrossRef]
  27. G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
    [CrossRef]
  28. P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
    [CrossRef]

1997 (2)

D. W. Fischer, M. C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997); Wright Laboratory, Materials Directorate, 3005 P Street, Suite 6, Wright-Patterson AFB, Ohio 45433-7707 (personal communication, 16July1997).

K. Kato, “Second-harmonic and sum-frequency generation in ZnGeP2,” Appl. Opt. 36, 2506–2510 (1997) and references cited therein.
[CrossRef] [PubMed]

1995 (3)

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

K. L. Vodopyanov, V. G. Voevodin, “Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
[CrossRef]

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995);“Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
[CrossRef]

1994 (2)

G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

1993 (1)

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

1992 (1)

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

1991 (1)

M. Quintero, J. Gonzalez, J. C. Wooley, “Optical energy-gap variation and deformation potentials in CuInTe2,” J. Appl. Phys. 70, 1451–1454 (1991).
[CrossRef]

1990 (1)

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

1989 (1)

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

1987 (2)

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

1984 (1)

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

1980 (2)

G. C. Bhar, G. Ghosh, “Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2,” IEEE J. Quantum Electron. QE-16, 838–843 (1980).
[CrossRef]

G. C. Bhar, G. Ghosh, “Dispersion of thermooptic coefficients in nonlinear crystals,” Appl. Opt. 19, 1029–1031 (1980).
[CrossRef] [PubMed]

1979 (1)

1978 (1)

S. V. Ivanova, V. S. Gorelik, B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalate,” Ferroelectrics 21, 563–564 (1978).
[CrossRef]

1976 (1)

1972 (2)

G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

1971 (2)

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

G. D. Boyd, W. B. Gandrud, E. Buehler, “Phase-matched upconversion of 10.6-μm radiation in ZnGeP2,” Appl. Phys. Lett. 18, 446–448 (1971).
[CrossRef]

1967 (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Andreev, Yu. M.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Bhar, G. C.

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

G. C. Bhar, G. Ghosh, “Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2,” IEEE J. Quantum Electron. QE-16, 838–843 (1980).
[CrossRef]

G. C. Bhar, G. Ghosh, “Dispersion of thermooptic coefficients in nonlinear crystals,” Appl. Opt. 19, 1029–1031 (1980).
[CrossRef] [PubMed]

G. C. Bhar, G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69, 730–733 (1979).
[CrossRef]

G. C. Bhar, “Refractive index interpolation in phase matching,” Appl. Opt. 15, 305–307 (1976).
[CrossRef]

Boyd, G. D.

G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

G. D. Boyd, W. B. Gandrud, E. Buehler, “Phase-matched upconversion of 10.6-μm radiation in ZnGeP2,” Appl. Phys. Lett. 18, 446–448 (1971).
[CrossRef]

Bridges, T. J.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Buehler, E.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

G. D. Boyd, W. B. Gandrud, E. Buehler, “Phase-matched upconversion of 10.6-μm radiation in ZnGeP2,” Appl. Phys. Lett. 18, 446–448 (1971).
[CrossRef]

Bykanov, A. N.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Chapliev, N. I.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Chatterjee, U.

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

Das, S.

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Fischer, D. W.

D. W. Fischer, M. C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997); Wright Laboratory, Materials Directorate, 3005 P Street, Suite 6, Wright-Patterson AFB, Ohio 45433-7707 (personal communication, 16July1997).

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Frolov, Yu. N.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Gandrud, W. B.

G. D. Boyd, W. B. Gandrud, E. Buehler, “Phase-matched upconversion of 10.6-μm radiation in ZnGeP2,” Appl. Phys. Lett. 18, 446–448 (1971).
[CrossRef]

Ghosh, D. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Ghosh, G.

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995);“Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
[CrossRef]

G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

G. C. Bhar, G. Ghosh, “Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2,” IEEE J. Quantum Electron. QE-16, 838–843 (1980).
[CrossRef]

G. C. Bhar, G. Ghosh, “Dispersion of thermooptic coefficients in nonlinear crystals,” Appl. Opt. 19, 1029–1031 (1980).
[CrossRef] [PubMed]

G. C. Bhar, G. Ghosh, “Temperature-dependent Sellmeier coefficients and coherence lengths for some chalcopyrite crystals,” J. Opt. Soc. Am. 69, 730–733 (1979).
[CrossRef]

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1997).

Gonzalez, J.

M. Quintero, J. Gonzalez, J. C. Wooley, “Optical energy-gap variation and deformation potentials in CuInTe2,” J. Appl. Phys. 70, 1451–1454 (1991).
[CrossRef]

Gorelik, V. S.

S. V. Ivanova, V. S. Gorelik, B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalate,” Ferroelectrics 21, 563–564 (1978).
[CrossRef]

Gorton, E. K.

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Gribenyukov, A. I.

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Gribenyyukov, A. I.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Hegde, S. M.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Henningsen, T.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Hobgood, H. M.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Hopkins, F. K.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Hopkins, R. H.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Ippolitov, I. I.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Ivanova, S. V.

S. V. Ivanova, V. S. Gorelik, B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalate,” Ferroelectrics 21, 563–564 (1978).
[CrossRef]

Jackson, D. J.

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Karyshev, V. D.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Kato, K.

Kheml’nitskii, G. S.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Konkin, D. V.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Konov, V. I.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Kovalev, I. O.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Kulevskii, L. A.

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Kuz’min, G. P.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Lisletsov, A. V.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Mason, P. D.

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Mishkin, S. N.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Mitchel, W. C.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Morozov, A. N.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Nesterenko, A. A.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Ohmer, M. C.

D. W. Fischer, M. C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997); Wright Laboratory, Materials Directorate, 3005 P Street, Suite 6, Wright-Patterson AFB, Ohio 45433-7707 (personal communication, 16July1997).

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Osorgin, A. E.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Patel, C. K. N.

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

Pollak, T. M.

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

Quintero, M.

M. Quintero, J. Gonzalez, J. C. Wooley, “Optical energy-gap variation and deformation potentials in CuInTe2,” J. Appl. Phys. 70, 1451–1454 (1991).
[CrossRef]

Samanta, L. K.

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Schunemann, P. G.

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

P. G. Schunemann, “Growth and properties of mid-IR nonlinear optical materials,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1997), paper CThG5.

Shchurov, V. V.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Smirnov, S. V.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Sosnin, A. V.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Starodumov, Yu. M.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Storz, F. G.

G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972).
[CrossRef]

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

Strukov, B. A.

S. V. Ivanova, V. S. Gorelik, B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalate,” Ferroelectrics 21, 563–564 (1978).
[CrossRef]

Thomas, R. N.

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

Varshni, Y. P.

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Velikanov, S. D.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Vodopyanov, K. L.

K. L. Vodopyanov, V. G. Voevodin, “Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Voevodin, V. G.

K. L. Vodopyanov, V. G. Voevodin, “Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
[CrossRef]

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Wernick, J. H.

G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972).
[CrossRef]

Wooley, J. C.

M. Quintero, J. Gonzalez, J. C. Wooley, “Optical energy-gap variation and deformation potentials in CuInTe2,” J. Appl. Phys. 70, 1451–1454 (1991).
[CrossRef]

Yerutin, A. S.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Zapolskii, A. F.

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

Zuev, V. V.

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Zyryanov, O. Ya.

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Appl. Opt. (3)

Appl. Phys. Lett. (4)

G. D. Boyd, E. Buehler, F. G. Storz, “Linear and nonlinear optical properties of ZnGeP2 and CdSe,” Appl. Phys. Lett. 18, 301–304 (1971).
[CrossRef]

G. D. Boyd, W. B. Gandrud, E. Buehler, “Phase-matched upconversion of 10.6-μm radiation in ZnGeP2,” Appl. Phys. Lett. 18, 446–448 (1971).
[CrossRef]

G. D. Boyd, T. J. Bridges, C. K. N. Patel, E. Buehler, “Phase-matched submillimeter wave generation by difference frequency mixing in ZnGeP2,” Appl. Phys. Lett. 21, 553–555 (1972).
[CrossRef]

G. C. Bhar, S. Das, U. Chatterjee, K. L. Vodopyanov, “Temperature-tunable second-harmonic generation in zinc germanium phosphide,” Appl. Phys. Lett. 54, 313–314 (1989).
[CrossRef]

Ferroelectrics (1)

S. V. Ivanova, V. S. Gorelik, B. A. Strukov, “Raman spectra and dielectric properties of lithium niobate and lithium tantalate,” Ferroelectrics 21, 563–564 (1978).
[CrossRef]

IEEE J. Quantum Electron. (2)

G. D. Boyd, E. Buehler, F. G. Storz, J. H. Wernick, “Linear and nonlinear optical properties of ternary AIIBIVC2V chalcopyrite semiconductors,” IEEE J. Quantum Electron. QE-8, 419–426 (1972).
[CrossRef]

G. C. Bhar, G. Ghosh, “Temperature dependent phase-matched nonlinear optical devices using CdSe and ZnGeP2,” IEEE J. Quantum Electron. QE-16, 838–843 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6, 431–433 (1994).
[CrossRef]

J. Appl. Phys. (4)

M. Quintero, J. Gonzalez, J. C. Wooley, “Optical energy-gap variation and deformation potentials in CuInTe2,” J. Appl. Phys. 70, 1451–1454 (1991).
[CrossRef]

D. W. Fischer, M. C. Ohmer, P. G. Schunemann, T. M. Pollak, “Direct measurement of ZnGeP2 birefringence from 0.66 to 12.2 μm using polarized light interference,” J. Appl. Phys. 77, 5942–5945 (1995).
[CrossRef]

D. W. Fischer, M. C. Ohmer, “Temperature dependence of ZnGeP2 birefringence using polarized light interference,” J. Appl. Phys. 81, 425–431 (1997); Wright Laboratory, Materials Directorate, 3005 P Street, Suite 6, Wright-Patterson AFB, Ohio 45433-7707 (personal communication, 16July1997).

H. M. Hobgood, T. Henningsen, R. N. Thomas, R. H. Hopkins, M. C. Ohmer, W. C. Mitchel, D. W. Fischer, S. M. Hegde, F. K. Hopkins, “ZnGeP2 grown by the liquid encapsulated Czochralski method,” J. Appl. Phys. 73, 4030–4037 (1993).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Ghosh, “Model for the thermo-optic coefficients of some standard optical glasses,” J. Non-Cryst. Solids 189, 191–197 (1995);“Thermo-optic coefficients of LiNbO3, LiIO3 and LiTaO3 nonlinear crystals,” Opt. Lett. 19, 1391–1393 (1994).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

K. L. Vodopyanov, V. G. Voevodin, “Type I and II ZnGeP2 travelling-wave optical parametric generator tunable between 3.9 and 10 μm,” Opt. Commun. 117, 277–282 (1995).
[CrossRef]

P. D. Mason, D. J. Jackson, E. K. Gorton, “CO2 laser frequency doubling in ZnGeP2,” Opt. Commun. 110, 163–166 (1994).
[CrossRef]

Physica (1)

Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967).
[CrossRef]

Sov. J. Quantum Electron. (5)

G. C. Bhar, L. K. Samanta, D. K. Ghosh, S. Das, “Tunable parametric ZnGeP2 crystal oscillator,” Sov. J. Quantum Electron. 17, 860–861 (1987).
[CrossRef]

Yu. M. Andreev, V. G. Voevodin, A. I. Gribenyyukov, O. Ya. Zyryanov, I. I. Ippolitov, A. N. Morozov, A. V. Sosnin, G. S. Kheml’nitskii , “Efficient generation of the second harmonic of tunable CO2 laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 14, 1021–1022 (1984).

Yu. M. Andreev, A. N. Bykanov, A. I. Gribenyyukov, V. V. Zuev, V. D. Karyshev, A. V. Lisletsov, I. O. Kovalev, V. I. Konov, G. P. Kuz’min, A. A. Nesterenko, A. E. Osorgin, Yu. M. Starodumov, N. I. Chapliev , “Conversion of pulsed laser radiation from the 9.3-9.6 μm range to the second harmonic in ZnGeP2 crystals,” Sov. J. Quantum Electron. 20, 410–414 (1990).

Yu. M. Andreev, S. D. Velikanov, A. S. Yerutin, A. F. Zapolskii, D. V. Konkin, S. N. Mishkin, S. V. Smirnov, Yu. N. Frolov, V. V. Shchurov , “Second harmonic generation from DF laser radiation in ZnGeP2,” Sov. J. Quantum Electron. 22, 1035 (1992).

K. L. Vodopyanov, V. G. Voevodin, A. I. Gribenyukov, L. A. Kulevskii, “High-efficiency picosecond parametric superradiance emitted by a ZnGeP2 crystal in the 5–6.3-μm range,” Sov. J. Quantum Electron. 17, 1159–1161 (1987).
[CrossRef]

Other (3)

P. G. Schunemann, “Growth and properties of mid-IR nonlinear optical materials,” in Conference on Lasers and Electro-Optics, Vol. 11 of OSA Technical Digest Series (Optical Society of America, Washington, D. C., 1997), paper CThG5.

Landolt-Bornstein, New Series, Group III, Vol. 17, Semiconductors (Springer-Verlag, Berlin, 1985).

G. Ghosh, Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Academic, San Diego, Calif., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Birefringence versus wavelength for ZnGeP2 nonlinear crystal at different temperatures: points, experimental data; curves, computed values; ×, experimental data of Boyd et al.1; (a) from Ref. 19.

Fig. 2
Fig. 2

Effective absorption bandgap versus temperature: solid circles, estimated data from the birefringence values; solid curve, computed values; open circles, experimental values.

Fig. 3
Fig. 3

2n(dn/dT) versus wavelength for ZnGeP2 crystal for ordinary and extraordinary rays: curves, computed values; solid circles, experimental data.

Fig. 4
Fig. 4

Phase-matched tuning curves for type 1 SHG in ZnGeP2 at three different temperatures. The solid, dashed, and dotted curves are at 100, 300, and 500 K, respectively. All the experimental points are near the temperature region of 500 K.

Fig. 5
Fig. 5

Phase-matched tuning curves for type 1 OPO in ZnGeP2 pumped by a Ho:YLF laser at 2.05 μm: Curves 1, 2, 3, temperatures at 500, 300, 100 K, respectively; open circles, experimental points as cited in Ref. 19.

Fig. 6
Fig. 6

Phase-matched tuning curves for a type 2 OPO in ZnGeP2 pumped by an Er;Cr:YSGG laser at 2.796 μm: open circles, experimental points as cited in Ref. 19. The calculated curves are shown at three different temperatures: dotted curve, 500 K; dashed–dotted curve, 300 K; dashed curve, 100 K, respectively.

Tables (4)

Tables Icon

Table 1 Sellmeier Coefficients for Birefringence of ZnGeP2 Nonlinear Crystal at Different Temperatures: Bf = H + I/(1 - G2) + J/(1 - L2)a

Tables Icon

Table 2 Sellmeier Coefficients for Thermo-optic Coefficients in ZnGeP2 Crystala

Tables Icon

Table 3 Sellmeier Coefficients for Refractive Indices of ZnGeP2 Nonlinear Crystal at Different Temperaturesa

Tables Icon

Table 4 Phase-Matching Characteristics for a Type 1 SHG of the CO2 laser Wavelengths in ZnGeP2 at Three Temperatures along with Experimental Values

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n o , e 2 = A o , e + B o , e λ 2 λ 2 - C o , e + D o , e λ 2 λ 2 - F o , e ,
B f = n e - n o = 1 n e + n o A e - A o + B e - B o λ 2 λ 2 - C + D e - D o λ 2 λ 2 - F
B f = H + I λ 2 λ 2 - G + J λ 2 λ 2 - L ,
E bg = 1.2398 G .
E bg = 3.04531 - 0.00378064 T 2 T + 900 .
E bg = 3.07274 - 0.00051807 T - 1.76247 × 10 - 6 T 2 .
2 n   d n d T = n 2 - 1 - 3 α R - 1 E eg d E eg d T   R 2 ,
2 n   dn dT = S 2 - 3 α R - 1 E eg d E eg d T   R 2 ,
2 n   d n d T = PR + QR 2 .
Q K = 320.525 + 1.77946 K + 0.00214223 K 2 ,
n o , e 2 = A o , e + B o , e λ 2 λ 2 - C o , e + D o , e λ 2 λ 2 - F o , e
E bg = 1.2398 C .

Metrics