Abstract

The optical properties and the surface morphologies of single-ion-beam sputtering (SIBS) and dual-ion-beam sputtering (DIBS) depositions of titanium oxide films are investigated and compared. In the DIBS process, the ion-assisted deposition by the voltage of a low ion beam ranged from 50 to 300 V at a 0% and 44% oxygen percentage. Cosputtering with materials of Si, SiO2 (fused silica), and Al is also utilized in SIBS to improve amorphous-structure film. For the low-absorption and surface-roughness film, the optimum deposition condition of DIBS and postdeposition baking temperature for SIBS and DIBS are essential to the process.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Wei, A. W. Louderback, “Method for fabricating multi-layer optical film,” U.S. patent4,142,958 (6March1979).
  2. J. R. Sites, P. Gilstrap, R. Rujkorakarn, “Ion beam sputter deposition of optical coating,” Opt. Eng. 22, 447–449 (1983).
    [CrossRef]
  3. M. Varasi, C. Misiano, L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117, 163–172 (1984).
    [CrossRef]
  4. B. E. Cole, T. J. Moravec, R. G. Ahonen, L. B. Ehlert, “Using ion sputtered optical coating as protective overcoats,” J. Vac. Sci. Technol. 2, 372–375 (1984).
    [CrossRef]
  5. G. Emiliani, S. Scaglone, “Properties of silicon and aluminum oxide thin films deposited by dual ion beam sputtering,” J. Vac. Sci. Technol. A 5, 1824–1827 (1987).
    [CrossRef]
  6. T. E. Varitimos, R. W. Tustison, “Ion beam sputtering of ZnS thin films,” Thin Solid Films 151, 27–33 (1987).
    [CrossRef]
  7. D. T. Wei, “Ion beam interference coating for ultralow optical loss,” Appl. Opt. 15, 2813–2816 (1989).
    [CrossRef]
  8. A. F. Stewart, S. Lu, M. Tehrani, C. Volk, “Ion beam sputtering of optical coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 662–677 (1993).
    [CrossRef]
  9. D. T. Wei, H. R. Kaufman, C. C. Lee, “Ion beam sputtering,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, (1995).
  10. C. C. Lee, D. T. Wei, J. C. Hsu, C.-H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films 290–291, 88–93 (1996).
    [CrossRef]
  11. P. Löbl, M. Hupertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
    [CrossRef]
  12. R. S. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1221 (1983).
    [CrossRef]
  13. H. Oechsner, “The application of post-ionization for sputtering studies and surface or thin film analysis,” in Handbook of Ion Beam Processing Technology, J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, eds. (Noyes, Park Ridge, N.J., 1989), pp. 153–154.
  14. R. N. Castellano, “Reactive ion beam sputtering of thin films of lead, zirconium and titanium,” Thin Solid Films 46, 213–221 (1977).
    [CrossRef]
  15. J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion beam sputter deposition of oxide films,” J. Vac. Sci. Technol. 3, 656 (1985).
    [CrossRef]
  16. H. Demiryont, J. R. Sites, “Effects of oxygen in ion-beam sputter deposition of titanium oxides,” J. Vac. Sci. Technol. A 2, 1457–1460 (1984).
    [CrossRef]
  17. L. S. Hsu, R. Rujkorakarn, J. R. Sites, C. Y. She, “Thermally induced crystallization of amorphous-titanium films,” J. Appl. Phys. 59, 3475–3480 (1986).
    [CrossRef]
  18. Y. Qu, T. A. Gessert, T. J. Coutts, R. Noufi, “Study of ion-beam-sputtered ZnO films as a function of deposition temperature,” J. Vac. Sci. Technol. A 12, 1507–1512 (1994).
    [CrossRef]
  19. C. C. Lee, J. C. Hsu, D. T. Wei, “Morphology of dual beam ion sputtered films investigated by AFM,” in Proceedings of International Conference on Metallurgical Coating and Thin Films (American Vacuum Society, New York, 1997), p. 178.

1996 (1)

C. C. Lee, D. T. Wei, J. C. Hsu, C.-H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films 290–291, 88–93 (1996).
[CrossRef]

1994 (2)

P. Löbl, M. Hupertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Y. Qu, T. A. Gessert, T. J. Coutts, R. Noufi, “Study of ion-beam-sputtered ZnO films as a function of deposition temperature,” J. Vac. Sci. Technol. A 12, 1507–1512 (1994).
[CrossRef]

1989 (1)

D. T. Wei, “Ion beam interference coating for ultralow optical loss,” Appl. Opt. 15, 2813–2816 (1989).
[CrossRef]

1987 (2)

G. Emiliani, S. Scaglone, “Properties of silicon and aluminum oxide thin films deposited by dual ion beam sputtering,” J. Vac. Sci. Technol. A 5, 1824–1827 (1987).
[CrossRef]

T. E. Varitimos, R. W. Tustison, “Ion beam sputtering of ZnS thin films,” Thin Solid Films 151, 27–33 (1987).
[CrossRef]

1986 (1)

L. S. Hsu, R. Rujkorakarn, J. R. Sites, C. Y. She, “Thermally induced crystallization of amorphous-titanium films,” J. Appl. Phys. 59, 3475–3480 (1986).
[CrossRef]

1985 (1)

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion beam sputter deposition of oxide films,” J. Vac. Sci. Technol. 3, 656 (1985).
[CrossRef]

1984 (3)

H. Demiryont, J. R. Sites, “Effects of oxygen in ion-beam sputter deposition of titanium oxides,” J. Vac. Sci. Technol. A 2, 1457–1460 (1984).
[CrossRef]

M. Varasi, C. Misiano, L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117, 163–172 (1984).
[CrossRef]

B. E. Cole, T. J. Moravec, R. G. Ahonen, L. B. Ehlert, “Using ion sputtered optical coating as protective overcoats,” J. Vac. Sci. Technol. 2, 372–375 (1984).
[CrossRef]

1983 (2)

R. S. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1221 (1983).
[CrossRef]

J. R. Sites, P. Gilstrap, R. Rujkorakarn, “Ion beam sputter deposition of optical coating,” Opt. Eng. 22, 447–449 (1983).
[CrossRef]

1977 (1)

R. N. Castellano, “Reactive ion beam sputtering of thin films of lead, zirconium and titanium,” Thin Solid Films 46, 213–221 (1977).
[CrossRef]

Ahonen, R. G.

B. E. Cole, T. J. Moravec, R. G. Ahonen, L. B. Ehlert, “Using ion sputtered optical coating as protective overcoats,” J. Vac. Sci. Technol. 2, 372–375 (1984).
[CrossRef]

Castellano, R. N.

R. N. Castellano, “Reactive ion beam sputtering of thin films of lead, zirconium and titanium,” Thin Solid Films 46, 213–221 (1977).
[CrossRef]

Cole, B. E.

B. E. Cole, T. J. Moravec, R. G. Ahonen, L. B. Ehlert, “Using ion sputtered optical coating as protective overcoats,” J. Vac. Sci. Technol. 2, 372–375 (1984).
[CrossRef]

Coutts, T. J.

Y. Qu, T. A. Gessert, T. J. Coutts, R. Noufi, “Study of ion-beam-sputtered ZnO films as a function of deposition temperature,” J. Vac. Sci. Technol. A 12, 1507–1512 (1994).
[CrossRef]

Demiryont, H.

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion beam sputter deposition of oxide films,” J. Vac. Sci. Technol. 3, 656 (1985).
[CrossRef]

H. Demiryont, J. R. Sites, “Effects of oxygen in ion-beam sputter deposition of titanium oxides,” J. Vac. Sci. Technol. A 2, 1457–1460 (1984).
[CrossRef]

Ehlert, L. B.

B. E. Cole, T. J. Moravec, R. G. Ahonen, L. B. Ehlert, “Using ion sputtered optical coating as protective overcoats,” J. Vac. Sci. Technol. 2, 372–375 (1984).
[CrossRef]

Emiliani, G.

G. Emiliani, S. Scaglone, “Properties of silicon and aluminum oxide thin films deposited by dual ion beam sputtering,” J. Vac. Sci. Technol. A 5, 1824–1827 (1987).
[CrossRef]

Gessert, T. A.

Y. Qu, T. A. Gessert, T. J. Coutts, R. Noufi, “Study of ion-beam-sputtered ZnO films as a function of deposition temperature,” J. Vac. Sci. Technol. A 12, 1507–1512 (1994).
[CrossRef]

Gilstrap, P.

J. R. Sites, P. Gilstrap, R. Rujkorakarn, “Ion beam sputter deposition of optical coating,” Opt. Eng. 22, 447–449 (1983).
[CrossRef]

Hsu, J. C.

C. C. Lee, D. T. Wei, J. C. Hsu, C.-H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films 290–291, 88–93 (1996).
[CrossRef]

C. C. Lee, J. C. Hsu, D. T. Wei, “Morphology of dual beam ion sputtered films investigated by AFM,” in Proceedings of International Conference on Metallurgical Coating and Thin Films (American Vacuum Society, New York, 1997), p. 178.

Hsu, L. S.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, C. Y. She, “Thermally induced crystallization of amorphous-titanium films,” J. Appl. Phys. 59, 3475–3480 (1986).
[CrossRef]

Hupertz, M.

P. Löbl, M. Hupertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Kaufman, H. R.

D. T. Wei, H. R. Kaufman, C. C. Lee, “Ion beam sputtering,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, (1995).

Kerwin, D. B.

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion beam sputter deposition of oxide films,” J. Vac. Sci. Technol. 3, 656 (1985).
[CrossRef]

Lasaponara, L.

M. Varasi, C. Misiano, L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117, 163–172 (1984).
[CrossRef]

Lee, C. C.

C. C. Lee, D. T. Wei, J. C. Hsu, C.-H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films 290–291, 88–93 (1996).
[CrossRef]

C. C. Lee, J. C. Hsu, D. T. Wei, “Morphology of dual beam ion sputtered films investigated by AFM,” in Proceedings of International Conference on Metallurgical Coating and Thin Films (American Vacuum Society, New York, 1997), p. 178.

D. T. Wei, H. R. Kaufman, C. C. Lee, “Ion beam sputtering,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, (1995).

Löbl, P.

P. Löbl, M. Hupertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Louderback, A. W.

D. T. Wei, A. W. Louderback, “Method for fabricating multi-layer optical film,” U.S. patent4,142,958 (6March1979).

Lu, S.

A. F. Stewart, S. Lu, M. Tehrani, C. Volk, “Ion beam sputtering of optical coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 662–677 (1993).
[CrossRef]

Mergel, D.

P. Löbl, M. Hupertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

Misiano, C.

M. Varasi, C. Misiano, L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117, 163–172 (1984).
[CrossRef]

Moravec, T. J.

B. E. Cole, T. J. Moravec, R. G. Ahonen, L. B. Ehlert, “Using ion sputtered optical coating as protective overcoats,” J. Vac. Sci. Technol. 2, 372–375 (1984).
[CrossRef]

Noufi, R.

Y. Qu, T. A. Gessert, T. J. Coutts, R. Noufi, “Study of ion-beam-sputtered ZnO films as a function of deposition temperature,” J. Vac. Sci. Technol. A 12, 1507–1512 (1994).
[CrossRef]

Oechsner, H.

H. Oechsner, “The application of post-ionization for sputtering studies and surface or thin film analysis,” in Handbook of Ion Beam Processing Technology, J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, eds. (Noyes, Park Ridge, N.J., 1989), pp. 153–154.

Qu, Y.

Y. Qu, T. A. Gessert, T. J. Coutts, R. Noufi, “Study of ion-beam-sputtered ZnO films as a function of deposition temperature,” J. Vac. Sci. Technol. A 12, 1507–1512 (1994).
[CrossRef]

Rujkorakarn, R.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, C. Y. She, “Thermally induced crystallization of amorphous-titanium films,” J. Appl. Phys. 59, 3475–3480 (1986).
[CrossRef]

J. R. Sites, P. Gilstrap, R. Rujkorakarn, “Ion beam sputter deposition of optical coating,” Opt. Eng. 22, 447–449 (1983).
[CrossRef]

Scaglone, S.

G. Emiliani, S. Scaglone, “Properties of silicon and aluminum oxide thin films deposited by dual ion beam sputtering,” J. Vac. Sci. Technol. A 5, 1824–1827 (1987).
[CrossRef]

She, C. Y.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, C. Y. She, “Thermally induced crystallization of amorphous-titanium films,” J. Appl. Phys. 59, 3475–3480 (1986).
[CrossRef]

Shen, C.-H.

C. C. Lee, D. T. Wei, J. C. Hsu, C.-H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films 290–291, 88–93 (1996).
[CrossRef]

Sites, J. R.

L. S. Hsu, R. Rujkorakarn, J. R. Sites, C. Y. She, “Thermally induced crystallization of amorphous-titanium films,” J. Appl. Phys. 59, 3475–3480 (1986).
[CrossRef]

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion beam sputter deposition of oxide films,” J. Vac. Sci. Technol. 3, 656 (1985).
[CrossRef]

H. Demiryont, J. R. Sites, “Effects of oxygen in ion-beam sputter deposition of titanium oxides,” J. Vac. Sci. Technol. A 2, 1457–1460 (1984).
[CrossRef]

J. R. Sites, P. Gilstrap, R. Rujkorakarn, “Ion beam sputter deposition of optical coating,” Opt. Eng. 22, 447–449 (1983).
[CrossRef]

Stewart, A. F.

A. F. Stewart, S. Lu, M. Tehrani, C. Volk, “Ion beam sputtering of optical coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 662–677 (1993).
[CrossRef]

Swanepoel, R. S.

R. S. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1221 (1983).
[CrossRef]

Tehrani, M.

A. F. Stewart, S. Lu, M. Tehrani, C. Volk, “Ion beam sputtering of optical coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 662–677 (1993).
[CrossRef]

Tustison, R. W.

T. E. Varitimos, R. W. Tustison, “Ion beam sputtering of ZnS thin films,” Thin Solid Films 151, 27–33 (1987).
[CrossRef]

Varasi, M.

M. Varasi, C. Misiano, L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117, 163–172 (1984).
[CrossRef]

Varitimos, T. E.

T. E. Varitimos, R. W. Tustison, “Ion beam sputtering of ZnS thin films,” Thin Solid Films 151, 27–33 (1987).
[CrossRef]

Volk, C.

A. F. Stewart, S. Lu, M. Tehrani, C. Volk, “Ion beam sputtering of optical coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 662–677 (1993).
[CrossRef]

Wei, D. T.

C. C. Lee, D. T. Wei, J. C. Hsu, C.-H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films 290–291, 88–93 (1996).
[CrossRef]

D. T. Wei, “Ion beam interference coating for ultralow optical loss,” Appl. Opt. 15, 2813–2816 (1989).
[CrossRef]

D. T. Wei, H. R. Kaufman, C. C. Lee, “Ion beam sputtering,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, (1995).

C. C. Lee, J. C. Hsu, D. T. Wei, “Morphology of dual beam ion sputtered films investigated by AFM,” in Proceedings of International Conference on Metallurgical Coating and Thin Films (American Vacuum Society, New York, 1997), p. 178.

D. T. Wei, A. W. Louderback, “Method for fabricating multi-layer optical film,” U.S. patent4,142,958 (6March1979).

Appl. Opt. (1)

D. T. Wei, “Ion beam interference coating for ultralow optical loss,” Appl. Opt. 15, 2813–2816 (1989).
[CrossRef]

J. Appl. Phys. (1)

L. S. Hsu, R. Rujkorakarn, J. R. Sites, C. Y. She, “Thermally induced crystallization of amorphous-titanium films,” J. Appl. Phys. 59, 3475–3480 (1986).
[CrossRef]

J. Phys. E (1)

R. S. Swanepoel, “Determination of the thickness and optical constants of amorphous silicon,” J. Phys. E 16, 1214–1221 (1983).
[CrossRef]

J. Vac. Sci. Technol. (2)

J. R. Sites, H. Demiryont, D. B. Kerwin, “Ion beam sputter deposition of oxide films,” J. Vac. Sci. Technol. 3, 656 (1985).
[CrossRef]

B. E. Cole, T. J. Moravec, R. G. Ahonen, L. B. Ehlert, “Using ion sputtered optical coating as protective overcoats,” J. Vac. Sci. Technol. 2, 372–375 (1984).
[CrossRef]

J. Vac. Sci. Technol. A (3)

G. Emiliani, S. Scaglone, “Properties of silicon and aluminum oxide thin films deposited by dual ion beam sputtering,” J. Vac. Sci. Technol. A 5, 1824–1827 (1987).
[CrossRef]

H. Demiryont, J. R. Sites, “Effects of oxygen in ion-beam sputter deposition of titanium oxides,” J. Vac. Sci. Technol. A 2, 1457–1460 (1984).
[CrossRef]

Y. Qu, T. A. Gessert, T. J. Coutts, R. Noufi, “Study of ion-beam-sputtered ZnO films as a function of deposition temperature,” J. Vac. Sci. Technol. A 12, 1507–1512 (1994).
[CrossRef]

Opt. Eng. (1)

J. R. Sites, P. Gilstrap, R. Rujkorakarn, “Ion beam sputter deposition of optical coating,” Opt. Eng. 22, 447–449 (1983).
[CrossRef]

Thin Solid Films (5)

M. Varasi, C. Misiano, L. Lasaponara, “Deposition of optical thin films by ion beam sputtering,” Thin Solid Films 117, 163–172 (1984).
[CrossRef]

T. E. Varitimos, R. W. Tustison, “Ion beam sputtering of ZnS thin films,” Thin Solid Films 151, 27–33 (1987).
[CrossRef]

C. C. Lee, D. T. Wei, J. C. Hsu, C.-H. Shen, “Influence of oxygen on some oxide films prepared by ion beam sputter deposition,” Thin Solid Films 290–291, 88–93 (1996).
[CrossRef]

P. Löbl, M. Hupertz, D. Mergel, “Nucleation and growth in TiO2 films prepared by sputtering and evaporation,” Thin Solid Films 251, 72–79 (1994).
[CrossRef]

R. N. Castellano, “Reactive ion beam sputtering of thin films of lead, zirconium and titanium,” Thin Solid Films 46, 213–221 (1977).
[CrossRef]

Other (5)

D. T. Wei, A. W. Louderback, “Method for fabricating multi-layer optical film,” U.S. patent4,142,958 (6March1979).

H. Oechsner, “The application of post-ionization for sputtering studies and surface or thin film analysis,” in Handbook of Ion Beam Processing Technology, J. J. Cuomo, S. M. Rossnagel, H. R. Kaufman, eds. (Noyes, Park Ridge, N.J., 1989), pp. 153–154.

C. C. Lee, J. C. Hsu, D. T. Wei, “Morphology of dual beam ion sputtered films investigated by AFM,” in Proceedings of International Conference on Metallurgical Coating and Thin Films (American Vacuum Society, New York, 1997), p. 178.

A. F. Stewart, S. Lu, M. Tehrani, C. Volk, “Ion beam sputtering of optical coatings,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, L. L. Chase, A. H. Guenther, B. E. Newman, M. J. Soileau, eds., Proc. SPIE2114, 662–677 (1993).
[CrossRef]

D. T. Wei, H. R. Kaufman, C. C. Lee, “Ion beam sputtering,” in Thin Films for Optical Systems, F. R. Flory, ed. (Marcel Dekker, New York, (1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic drawing of the IBS system.

Fig. 2
Fig. 2

Deposition rate of titanium oxide versus oxygen partial pressure in the SIBS process.

Fig. 3
Fig. 3

Refractive index and extinction coefficient at a wavelength of 550 nm versus oxygen partial pressure: □, unbaked; ●, baked at 275 °C; △, baked at 450 °C.

Fig. 4
Fig. 4

Surface morphology of titanium oxide film as measured by an AFM: (a) unbaked, (b) baked 275 °C, (c) baked 450 °C.

Fig. 5
Fig. 5

Surface roughness versus oxygen partial pressure of baked (●, 275 °C; △, 450 °C) and unbaked (□) titanium oxide film.

Fig. 6
Fig. 6

X-ray diffraction of titanium oxide film of (a) SIBS deposition compared with that of (b) e-beam deposition, both baked at 450 °C.

Fig. 7
Fig. 7

Deposition rate of titanium oxide versus the ion-beam voltage of the second ion source (V b2) with P O2 = 1 × 10-5 Torr.

Fig. 8
Fig. 8

Surface roughness (rms) of titanium oxide film (baked and unbaked) versus ion-beam voltage of the second ion source (V b2).

Fig. 9
Fig. 9

TiO2 film deposited by DIBS (V b2 = 80 V; oxygen percentage, 44%), rms = 0.096 nm.

Fig. 10
Fig. 10

Refractive index (n) and extinction coefficient (k) of TiO2 film at a wavelength of 550 nm (baked at 275 °C and unbaked) versus ion beam voltage of the second source (V b2).

Fig. 11
Fig. 11

Morphology of TiO2 film deposited at P O2 = 2 × 10-5 Torr and baked at 450 °C, rms = 1.7 nm.

Fig. 12
Fig. 12

Surface roughness of sputtering Ti and cosputtering Si (○), A1 (△), SiO2 (▽) at P O2 = 2 × 10-5 Torr versus baked temperature.

Fig. 13
Fig. 13

Refractive index and extinction coefficient at a wavelength of 550 nm of sputtering Ti (□) and cosputtering Si (○), A1 (△), SiO2 (▽) versus baked temperature.

Metrics