Abstract

We have developed a diffractive micromachined chopper (DMC) for an IR wavelength of ∼10 μm. This device operates mechanically by movable reflection grating beams. It modulates the diffraction efficiency by controlling the displacement of grating beams by an electrostatic force. For a CO2 laser beam, a high modulation efficiency of 84% with an -0.8-dB small insertion loss was obtained by detecting 0th-order diffracted light. A novel pyroelectric IR microsensor with a DMC and a diffractive multilevel Si microlens was proposed and it demonstrated the detection of human existence.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kobayashi, J. Kita, K. Yoshino, “The light-chopper for infrared detection utilizing ferroelectric liquid crystal,” Trans. Inst. Electron. Inf. Commun. Eng. Jpn. J79-C-1, 240–248 (1996).
  2. O. Solgaard, F. S. A. Sandejas, D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992).
    [CrossRef] [PubMed]
  3. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  4. R. J. Roark, Formulas for Stress and Strain (McGraw-Hill, Kogagusha, Ltd., Tokyo, 1965).
  5. F. S. A. Sandejas, R. B. Apte, W. C. Banyai, D. M. Bloom, “Surface microfabrication of deformable grating light valves for high resolution displays,” in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (IEE Japan, Yokohama, 1993), pp. 6, 7.
  6. K. Fujikawa, G. Hirakawa, T. Shiono, K. Nomura, “Optical properties of a Si binary optic microlens for infrared ray,” in Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya (IEEE, New York, 1997), pp. 360–365.
  7. G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Tech. Rep. 914 (MIT Press, Cambridge, Mass., 1991).
  8. T. Kotani, T. Nakanishi, K. Nomura, “Fabrication of a new pyroelectric infrared sensor using MgO surface micromachining,” J. Appl. Phys. 32, 6297–6300 (1993).
    [CrossRef]

1996 (1)

J. Kobayashi, J. Kita, K. Yoshino, “The light-chopper for infrared detection utilizing ferroelectric liquid crystal,” Trans. Inst. Electron. Inf. Commun. Eng. Jpn. J79-C-1, 240–248 (1996).

1993 (1)

T. Kotani, T. Nakanishi, K. Nomura, “Fabrication of a new pyroelectric infrared sensor using MgO surface micromachining,” J. Appl. Phys. 32, 6297–6300 (1993).
[CrossRef]

1992 (1)

Apte, R. B.

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, D. M. Bloom, “Surface microfabrication of deformable grating light valves for high resolution displays,” in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (IEE Japan, Yokohama, 1993), pp. 6, 7.

Banyai, W. C.

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, D. M. Bloom, “Surface microfabrication of deformable grating light valves for high resolution displays,” in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (IEE Japan, Yokohama, 1993), pp. 6, 7.

Bloom, D. M.

O. Solgaard, F. S. A. Sandejas, D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992).
[CrossRef] [PubMed]

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, D. M. Bloom, “Surface microfabrication of deformable grating light valves for high resolution displays,” in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (IEE Japan, Yokohama, 1993), pp. 6, 7.

Fujikawa, K.

K. Fujikawa, G. Hirakawa, T. Shiono, K. Nomura, “Optical properties of a Si binary optic microlens for infrared ray,” in Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya (IEEE, New York, 1997), pp. 360–365.

Hirakawa, G.

K. Fujikawa, G. Hirakawa, T. Shiono, K. Nomura, “Optical properties of a Si binary optic microlens for infrared ray,” in Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya (IEEE, New York, 1997), pp. 360–365.

Kita, J.

J. Kobayashi, J. Kita, K. Yoshino, “The light-chopper for infrared detection utilizing ferroelectric liquid crystal,” Trans. Inst. Electron. Inf. Commun. Eng. Jpn. J79-C-1, 240–248 (1996).

Kobayashi, J.

J. Kobayashi, J. Kita, K. Yoshino, “The light-chopper for infrared detection utilizing ferroelectric liquid crystal,” Trans. Inst. Electron. Inf. Commun. Eng. Jpn. J79-C-1, 240–248 (1996).

Kotani, T.

T. Kotani, T. Nakanishi, K. Nomura, “Fabrication of a new pyroelectric infrared sensor using MgO surface micromachining,” J. Appl. Phys. 32, 6297–6300 (1993).
[CrossRef]

Nakanishi, T.

T. Kotani, T. Nakanishi, K. Nomura, “Fabrication of a new pyroelectric infrared sensor using MgO surface micromachining,” J. Appl. Phys. 32, 6297–6300 (1993).
[CrossRef]

Nomura, K.

T. Kotani, T. Nakanishi, K. Nomura, “Fabrication of a new pyroelectric infrared sensor using MgO surface micromachining,” J. Appl. Phys. 32, 6297–6300 (1993).
[CrossRef]

K. Fujikawa, G. Hirakawa, T. Shiono, K. Nomura, “Optical properties of a Si binary optic microlens for infrared ray,” in Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya (IEEE, New York, 1997), pp. 360–365.

Roark, R. J.

R. J. Roark, Formulas for Stress and Strain (McGraw-Hill, Kogagusha, Ltd., Tokyo, 1965).

Sandejas, F. S. A.

O. Solgaard, F. S. A. Sandejas, D. M. Bloom, “Deformable grating optical modulator,” Opt. Lett. 17, 688–690 (1992).
[CrossRef] [PubMed]

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, D. M. Bloom, “Surface microfabrication of deformable grating light valves for high resolution displays,” in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (IEE Japan, Yokohama, 1993), pp. 6, 7.

Shiono, T.

K. Fujikawa, G. Hirakawa, T. Shiono, K. Nomura, “Optical properties of a Si binary optic microlens for infrared ray,” in Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya (IEEE, New York, 1997), pp. 360–365.

Solgaard, O.

Swanson, G. J.

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Tech. Rep. 914 (MIT Press, Cambridge, Mass., 1991).

Yoshino, K.

J. Kobayashi, J. Kita, K. Yoshino, “The light-chopper for infrared detection utilizing ferroelectric liquid crystal,” Trans. Inst. Electron. Inf. Commun. Eng. Jpn. J79-C-1, 240–248 (1996).

J. Appl. Phys. (1)

T. Kotani, T. Nakanishi, K. Nomura, “Fabrication of a new pyroelectric infrared sensor using MgO surface micromachining,” J. Appl. Phys. 32, 6297–6300 (1993).
[CrossRef]

Opt. Lett. (1)

Trans. Inst. Electron. Inf. Commun. Eng. Jpn. (1)

J. Kobayashi, J. Kita, K. Yoshino, “The light-chopper for infrared detection utilizing ferroelectric liquid crystal,” Trans. Inst. Electron. Inf. Commun. Eng. Jpn. J79-C-1, 240–248 (1996).

Other (5)

R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

R. J. Roark, Formulas for Stress and Strain (McGraw-Hill, Kogagusha, Ltd., Tokyo, 1965).

F. S. A. Sandejas, R. B. Apte, W. C. Banyai, D. M. Bloom, “Surface microfabrication of deformable grating light valves for high resolution displays,” in Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators (IEE Japan, Yokohama, 1993), pp. 6, 7.

K. Fujikawa, G. Hirakawa, T. Shiono, K. Nomura, “Optical properties of a Si binary optic microlens for infrared ray,” in Proceedings of the Tenth Annual International Workshop on Micro Electro Mechanical Systems, Nagoya (IEEE, New York, 1997), pp. 360–365.

G. J. Swanson, “Binary optics technology: theoretical limits on the diffraction efficiency of multilevel diffractive optical elements,” MIT Tech. Rep. 914 (MIT Press, Cambridge, Mass., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Structure and operation of the DMC (a) when no voltage is applied, (b) when appropriate voltage is applied.

Fig. 2
Fig. 2

Diffraction efficiency curves of a two-level reflection grating calculated as a function of an effective groove depth normalized by a wavelength.

Fig. 3
Fig. 3

Maximum 0th-order diffraction efficiency curve at L = λ/2 cos θ calculated as a function of a normalized grating period. The maximum efficiency is equal to the modulation efficiency because the minimum is 0%.

Fig. 4
Fig. 4

Drive voltage and resonance frequency curves of DMC calculated as a function of beam length when residual stress is 150 MPa.

Fig. 5
Fig. 5

Drive voltage and resonance frequency curves of DMC calculated as a function of residual stress when the beam length is 2 mm.

Fig. 6
Fig. 6

Fabrication process of the DMC.

Fig. 7
Fig. 7

Microphotographs of the fabricated DMC: (a) entire DMC, (b) ends of the grating beams.

Fig. 8
Fig. 8

0th-Order diffraction efficiency of the fabricated DMC for a CO2 laser beam (λ = 10.6 μm, TE polarization) measured as a function of the applied voltage.

Fig. 9
Fig. 9

Novel pyroelectric IR microsensor constructed with diffractive optical components such as the DMC and a diffractive Si multilevel microlens.

Fig. 10
Fig. 10

Output signal from our proposed IR sensor and the input signal of the applied voltage to the DMC.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L eff = L   cos   θ ,
T opt = λ / 4   cos   θ ,
θ s = sin - 1 λ / Λ .

Metrics