Abstract

Optical breakdown has been generated by focusing YAG laser radiation in the air. The laser radiation itself was scattered due to laser-induced air optical breakdown. Angular distributions of scattered radiation at 1064, 532, and 355 nm were measured. Analysis of the distributions has been performed in terms of Mie scattering. It has been assumed that scattering of laser radiation is due mainly to highly ionized plasma balls in the initial phase of air optical breakdown. The wavelength-dependent angular distribution has been analyzed with two parameters. The mean radius and the plasma frequency of the plasma balls have been determined by a least-squares fit procedure. Observed wavelength-dependent angular distributions are in good agreement with ones calculated by Mie theory.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. P. Raizer, Gas Discharge Physics (Springer-Verlag, Tokyo, 1991), pp. 151–159.
  2. J. H. Eickmans, W. F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li, and Na in plumes resulting from laser-induced droplet explosion,” Appl. Opt. 26, 3721–3725 (1987).
    [CrossRef] [PubMed]
  3. J. Ashkenzy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
    [CrossRef]
  4. C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Temperature measurements from first-negative N2+ spectra produced by laser-induced multiphoton ionization and optical breakdown of nitrogen,” Appl. Opt. 34, 3331–3335 (1995).
    [CrossRef] [PubMed]
  5. D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
    [CrossRef]
  6. I. A. Bufetova, G. A. Bufetova, A. M. Prokorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).
  7. K. D. Song, D. R. Alexander, “Excimer laser produced plasmas in copper wire targets and water droplets,” J. Appl. Phys. 76, 3297–3301 (1994).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 635–656.
  9. V. G. Faratonov, N. V. Voshchinnikov, V. V. Somsikov, “Light scattering by a core–mantle spheroidal particle,” Appl. Opt. 35, 5412–5426 (1996).
    [CrossRef]
  10. J. L. Hage, J. M. Greenberg, R. T. Wang, “Scattering from arbitrarily shaped particles: theory and experiment,” Appl. Opt. 30, 1141–1152 (1991).
    [CrossRef] [PubMed]

1996

1995

1994

K. D. Song, D. R. Alexander, “Excimer laser produced plasmas in copper wire targets and water droplets,” J. Appl. Phys. 76, 3297–3301 (1994).
[CrossRef]

1993

I. A. Bufetova, G. A. Bufetova, A. M. Prokorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

1991

J. Ashkenzy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef]

J. L. Hage, J. M. Greenberg, R. T. Wang, “Scattering from arbitrarily shaped particles: theory and experiment,” Appl. Opt. 30, 1141–1152 (1991).
[CrossRef] [PubMed]

1987

1973

D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
[CrossRef]

Alexander, D. R.

K. D. Song, D. R. Alexander, “Excimer laser produced plasmas in copper wire targets and water droplets,” J. Appl. Phys. 76, 3297–3301 (1994).
[CrossRef]

Ashkenzy, J.

J. Ashkenzy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 635–656.

Bufetova, G. A.

I. A. Bufetova, G. A. Bufetova, A. M. Prokorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Bufetova, I. A.

I. A. Bufetova, G. A. Bufetova, A. M. Prokorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Caner, M.

J. Ashkenzy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef]

Chang, R. K.

Eickmans, J. H.

Faratonov, V. G.

Fedorov, V. B.

I. A. Bufetova, G. A. Bufetova, A. M. Prokorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Greenberg, J. M.

Hage, J. L.

Hornkohl, J. O.

Hsieh, W. F.

Kipper, R.

J. Ashkenzy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef]

Lencioni, D. E.

D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
[CrossRef]

Lewis, J. W. L.

Parigger, C.

Plemmons, D. H.

Prokorov, A. M.

I. A. Bufetova, G. A. Bufetova, A. M. Prokorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Raizer, Y. P.

Y. P. Raizer, Gas Discharge Physics (Springer-Verlag, Tokyo, 1991), pp. 151–159.

Somsikov, V. V.

Song, K. D.

K. D. Song, D. R. Alexander, “Excimer laser produced plasmas in copper wire targets and water droplets,” J. Appl. Phys. 76, 3297–3301 (1994).
[CrossRef]

Voshchinnikov, N. V.

Wang, R. T.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 635–656.

Appl. Opt.

Appl. Phys. Lett.

D. E. Lencioni, “The effect of dust on 10.6-μm laser-induced air breakdown,” Appl. Phys. Lett. 23, 12–14 (1973).
[CrossRef]

J. Appl. Phys.

K. D. Song, D. R. Alexander, “Excimer laser produced plasmas in copper wire targets and water droplets,” J. Appl. Phys. 76, 3297–3301 (1994).
[CrossRef]

JETP Lett.

I. A. Bufetova, G. A. Bufetova, A. M. Prokorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Phys. Rev. A

J. Ashkenzy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef]

Other

Y. P. Raizer, Gas Discharge Physics (Springer-Verlag, Tokyo, 1991), pp. 151–159.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1980), pp. 635–656.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: PT, photomultiplier tube; SHG, second-harmonic generator; THG, third-harmonic generator.

Fig. 2
Fig. 2

Intensity of radiation at 1064, 532, and 355 nm plotted versus scattered angles. The laser pulse energy at 1064 nm is 113 mJ and those at 532 and 355 nm are lower than 1 mJ. The solid curves represent the calculated angular distribution. The determined refractive indices n are 0.41 at 1064 nm, 0.89 at 532 nm, and 0.95 at 355 nm; the mean radius is 328(86) nm; and the width is 262(52) nm.

Fig. 3
Fig. 3

Plasma frequency plotted versus laser pulse energy. Each error bar represents one standard deviation.

Fig. 4
Fig. 4

Width versus laser pulse energy. Each error bar represents one standard deviation.

Fig. 5
Fig. 5

Mean radius versus laser pulse energy. Each error bar represents one standard deviation.

Fig. 6
Fig. 6

Total number of plasma spheres estimated with 1064-nm scattering intensity and plotted versus laser pulse energy. Each error bar represents one standard deviation.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I θ ,   λ = λ 2 4 π 2 r 2   |   l = 1 - i l e B l P l 1 cos   θ sin   θ - m B l P l 1 cos   θ sin   θ | 2 ,
I | | θ ,   λ = λ 2 4 π 2 r 2   |   l = 1 - i l e B l P l 1 cos   θ sin   θ - m B l P l 1 cos   θ sin   θ | 2 ,
e B l = i l + 1 2 l + 1 l l + 1 n Ψ l q Ψ l nq - Ψ l q Ψ l nq n ζ l q Ψ l nq - ζ l q Ψ l nq ,
m B l = i l + 1 2 l + 1 l l + 1 n Ψ l q Ψ l nq - Ψ l q Ψ l nq n ζ l q Ψ l nq - ζ l q Ψ l nq ,
q = 2 π λ   a , Ψ l q = π q 2   J l + 1 / 2 , ζ l q = π q 2   H l + 1 / 2 1 q ,
n 2 = 1 - ω p 2 ω ω - i β ,
f R = A   exp - R - a 0 2 Δ a 2 ,
y θ ,   λ = 0   I α R ,   θ ,   λ f R d R + Δ θ ,   λ ,
δ i = Δ θ ,   λ / y θ ,   λ ,
i = 1 M   δ i 2 ,
f = nr 2 n - 1 2 ,

Metrics