Abstract

Laser-induced fluorescence spectra detected with high-spectral-resolution lidar on the facades of the Baptistery and the Cathedral in Parma are presented and discussed. The data show fluorescence features that are due to the stone materials that constitute the coating of the monuments and to photosynthetically active colonizations on their surfaces. This underlines the feasibility of a remote fluorescence analysis of historic facades. The data were also compared with the fluorescence lidar spectra obtained from similar lithotypes, sampled either in historic extraction areas or in sites exploited recently. The results open good prospects for spectral characterization of historic materials and identification of their provenance.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Matteini, A. Moles, Scienza e restauro: metodi d’indagine (Nardini Editore, Firenze, 1984).
  2. L. M. Coyne, S. W. S. McKeever, D. F. Blake, “Spectroscopic characterization of minerals and their surfaces,” in Vol. 415 of the American Chemical Society ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), p. 490.
  3. M. Bacci, “Fibre optics applications to works of art,” Sensors Actuators B 29, 190–196 (1995).
    [CrossRef]
  4. L. Burgio, D. A. Ciomartan, R. Clark, “Raman microscopy study of the pigments on three illuminated Mediaeval Latin manuscripts,” J. Raman Spectrosc. 28, 79–83 (1997).
    [CrossRef]
  5. M. Fondelli, “Porta del Paradiso: il rilevamento fotogrammetrico,” in Metodo e scienza—Operatività e ricerca nel restauro (Sansoni Editore, Firenze, 1982), pp. 184–185.
  6. I. Scollar, A. Tabbagh, A. Hesse, I. Herzog, Archeological Prospecting and Remote Sensing (Cambridge U. Press, Cambridge, U.K., 1990).
  7. C. M. Pieters, P. A. Englert, Remote Geochemical Analysis: Elemental and Mineralogical Composition (Cambridge U. Press, Cambridge, U.K., 1990).
  8. H. G. M. Edwards, M. R. D. Seaward, “Raman spectroscopy and lichen biodeterioration,” in Spectrosc. Eur.5, 16–20 (1993).
  9. R. D. Neuser, “A new high-intensity cathodoluminescence microscope and its application to weakly luminishing minerals,” Bochum. Geol. Geotech. Arb. 44, 116–118 (1995).
  10. V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
    [CrossRef]
  11. J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
    [CrossRef]
  12. R. Chiari, M. Picollo, S. Porcinai, B. Radicati, A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini, L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.
  13. E. Becquerel, “Recherches sur divers effets lumineux qui resultent de l’action de la lumiere sur les corps. Composition de la lumiere emise (troisiemme memoire),” Ann. Chim. Phys. 3, 40–128 (1859).
  14. H. Gies, “Activation possibilities and geochemical correlation of photoluminescing carbonates, particularly calcites,” Miner. Deposita 10, 216–227 (1975).
    [CrossRef]
  15. T. Ugumori, M. Ikeya, “Luminescence of CaCO3 under N2 laser excitation and application to archaelogical dating,” Jpn. J. Appl. Phys. 19, 459–465 (1980).
    [CrossRef]
  16. V. A. Pedone, K. R. Cercone, R. C. Burruss, “Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy,” Chem. Geology 88, 183–190 (1991).
    [CrossRef]
  17. J. P. deNeufville, A. Kasdan, R. J. L. Chimenti , “Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 1: Optical characteristics of uranyl geologic targets,” Appl. Opt. 20, 1279–1296 (1981).
    [PubMed]
  18. W. L. Medlin, “Trapping centre in thermoluminescence calcite,” Phys. Rev. 135, A1770–A1779 (1964).
    [CrossRef]
  19. H. G. Machel, R. A. Mason, A. N. Mariano, A. Mucci, “Causes and emissions of luminescence in calcite and dolomite,” in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative ApplicationsC. E. Barker, O. C. Kopp, eds., (SEPM, Tulsa, 1991), pp. 9–25.
  20. A. N. Mariano, P. J. Ring, “Europium-activated cathodoluminescence in minerals,” Geochim. Cosmochim. Acta 39, 649–660 (1975).
    [CrossRef]
  21. G. Walker, “Mineralogical applications of luminescence techniques,” in Chemical bonding and Spectroscopy, Mineral Chemistry Series,F. J. Berry, D. J. Vaughan, eds. (Chapman & Hall, New York, 1985), pp. 103–140.
    [CrossRef]
  22. R. A. Mason, “Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, UK,” Chem. Geol. 64, 209–224 (1987).
    [CrossRef]
  23. T. Calderon, M. Aguilar, F. Jaque, R. Coy-Yll, “Thermoluminescence from natural calcites,” J. Phys. 17, 2027–2038 (1984).
  24. F. J. Berry, D. J. Vaughan, Chemical Bonding and Spectroscopy in Mineral Chemistry (Chapman & Hall, New York, 1985).
    [CrossRef]
  25. C. S. Yentsch, D. W. Menzel, “A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence,” Deep-Sea Res. 10, 221–231 (1963).
  26. W. E. Chapelle, F. M. Wood, J. E. McMutrey, W. W. Newcomb, “Laser-induced fluorescence of green plants. 1: A technique for the remote detection of plant stress and species differentiation,” Appl. Opt. 23, 134–142 (1984).
    [CrossRef]
  27. H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in the detection of stress conditions in plants,” in CRC Critical Reviews in Analytical Chemistry (CRC Press, Boca Raton, Fla., 1988), Vol. 19, Suppl. 1, pp. S29–S85.
    [CrossRef]
  28. J. F. H. Snel, O. van Kooten, “The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology,” Photosynth. Res. 25, 146–332 (1990).
  29. R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
    [CrossRef]
  30. A. M. Chekalyuk, M. Yu. Gorbunov, “Development of the lidar pump-and-probe technique for remote measuring the efficiency of primary photochemical reactions in leaves of green plants,” EARSeL Adv. Remote Sensing 3(3), 42–56 (1995).
  31. H. K. Lichtenthaler, F. T. Stober, M. Lang, “The Nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sensing 1(2), 20–32 (1992).
  32. R. M. Measures, Laser remote sensing (Wiley Interscience, New York, 1984).
  33. F. E. Hoge, “Oceanic and terrestrial lidar measurements,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 409–503.
  34. G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
    [CrossRef]
  35. H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
    [CrossRef] [PubMed]
  36. F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Pigments,” in Chesapeake Bay Plume StudyJ. W. Campbell, J. P. Thomas, eds., NASA Conf. Pub. Vol. 2188, Washington, D.C., 1981, pp. 349–374.
  37. R. M. Measures, Laser Remote Chemical Analysis (Wiley, New York, 1988).
  38. F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).
  39. G. Cecchi, M. Bazzani, V. Raimondi, L. Pantani, “Fluorescence lidar in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, Piscataway, N.J., 1994), pp. 637–639.
  40. G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–172 (1996).
    [CrossRef]
  41. Salimbene De Adams , Chronica , F. Bernini, ed. (Laterza, Bari, 1942), Vol. II, p. 352. (1983).
  42. G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
    [CrossRef]

1997 (1)

L. Burgio, D. A. Ciomartan, R. Clark, “Raman microscopy study of the pigments on three illuminated Mediaeval Latin manuscripts,” J. Raman Spectrosc. 28, 79–83 (1997).
[CrossRef]

1995 (3)

R. D. Neuser, “A new high-intensity cathodoluminescence microscope and its application to weakly luminishing minerals,” Bochum. Geol. Geotech. Arb. 44, 116–118 (1995).

M. Bacci, “Fibre optics applications to works of art,” Sensors Actuators B 29, 190–196 (1995).
[CrossRef]

A. M. Chekalyuk, M. Yu. Gorbunov, “Development of the lidar pump-and-probe technique for remote measuring the efficiency of primary photochemical reactions in leaves of green plants,” EARSeL Adv. Remote Sensing 3(3), 42–56 (1995).

1994 (3)

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

H. Edner, J. Johansson, S. Svanberg, E. Wallinder, “Fluorescence lidar multicolor imaging of vegetation,” Appl. Opt. 33, 2471–2479 (1994).
[CrossRef] [PubMed]

1992 (2)

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The Nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sensing 1(2), 20–32 (1992).

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

1991 (1)

V. A. Pedone, K. R. Cercone, R. C. Burruss, “Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy,” Chem. Geology 88, 183–190 (1991).
[CrossRef]

1990 (1)

J. F. H. Snel, O. van Kooten, “The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology,” Photosynth. Res. 25, 146–332 (1990).

1987 (1)

R. A. Mason, “Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, UK,” Chem. Geol. 64, 209–224 (1987).
[CrossRef]

1984 (2)

1981 (1)

1980 (2)

T. Ugumori, M. Ikeya, “Luminescence of CaCO3 under N2 laser excitation and application to archaelogical dating,” Jpn. J. Appl. Phys. 19, 459–465 (1980).
[CrossRef]

J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
[CrossRef]

1975 (2)

H. Gies, “Activation possibilities and geochemical correlation of photoluminescing carbonates, particularly calcites,” Miner. Deposita 10, 216–227 (1975).
[CrossRef]

A. N. Mariano, P. J. Ring, “Europium-activated cathodoluminescence in minerals,” Geochim. Cosmochim. Acta 39, 649–660 (1975).
[CrossRef]

1964 (1)

W. L. Medlin, “Trapping centre in thermoluminescence calcite,” Phys. Rev. 135, A1770–A1779 (1964).
[CrossRef]

1963 (1)

C. S. Yentsch, D. W. Menzel, “A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence,” Deep-Sea Res. 10, 221–231 (1963).

1859 (1)

E. Becquerel, “Recherches sur divers effets lumineux qui resultent de l’action de la lumiere sur les corps. Composition de la lumiere emise (troisiemme memoire),” Ann. Chim. Phys. 3, 40–128 (1859).

Aardema, B. W.

J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
[CrossRef]

Agati, G.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

Aguilar, M.

T. Calderon, M. Aguilar, F. Jaque, R. Coy-Yll, “Thermoluminescence from natural calcites,” J. Phys. 17, 2027–2038 (1984).

Bacci, M.

M. Bacci, “Fibre optics applications to works of art,” Sensors Actuators B 29, 190–196 (1995).
[CrossRef]

Bambin, V.

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

Bazzani, M.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

G. Cecchi, M. Bazzani, V. Raimondi, L. Pantani, “Fluorescence lidar in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, Piscataway, N.J., 1994), pp. 637–639.

Becquerel, E.

E. Becquerel, “Recherches sur divers effets lumineux qui resultent de l’action de la lumiere sur les corps. Composition de la lumiere emise (troisiemme memoire),” Ann. Chim. Phys. 3, 40–128 (1859).

Berry, F. J.

F. J. Berry, D. J. Vaughan, Chemical Bonding and Spectroscopy in Mineral Chemistry (Chapman & Hall, New York, 1985).
[CrossRef]

Blake, D. F.

L. M. Coyne, S. W. S. McKeever, D. F. Blake, “Spectroscopic characterization of minerals and their surfaces,” in Vol. 415 of the American Chemical Society ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), p. 490.

Bosco, M.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Burgio, L.

L. Burgio, D. A. Ciomartan, R. Clark, “Raman microscopy study of the pigments on three illuminated Mediaeval Latin manuscripts,” J. Raman Spectrosc. 28, 79–83 (1997).
[CrossRef]

Burns, S. J.

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

Burruss, R. C.

V. A. Pedone, K. R. Cercone, R. C. Burruss, “Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy,” Chem. Geology 88, 183–190 (1991).
[CrossRef]

Calderon, T.

T. Calderon, M. Aguilar, F. Jaque, R. Coy-Yll, “Thermoluminescence from natural calcites,” J. Phys. 17, 2027–2038 (1984).

Campbell, J. W.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Pigments,” in Chesapeake Bay Plume StudyJ. W. Campbell, J. P. Thomas, eds., NASA Conf. Pub. Vol. 2188, Washington, D.C., 1981, pp. 349–374.

Castagnoli, F.

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).

Cecchi, G.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–172 (1996).
[CrossRef]

G. Cecchi, M. Bazzani, V. Raimondi, L. Pantani, “Fluorescence lidar in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, Piscataway, N.J., 1994), pp. 637–639.

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Cercone, K. R.

V. A. Pedone, K. R. Cercone, R. C. Burruss, “Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy,” Chem. Geology 88, 183–190 (1991).
[CrossRef]

Chamay, J.

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

Chapelle, W. E.

Chekalyuk, A. M.

A. M. Chekalyuk, M. Yu. Gorbunov, “Development of the lidar pump-and-probe technique for remote measuring the efficiency of primary photochemical reactions in leaves of green plants,” EARSeL Adv. Remote Sensing 3(3), 42–56 (1995).

Chiari, R.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–172 (1996).
[CrossRef]

R. Chiari, M. Picollo, S. Porcinai, B. Radicati, A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini, L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.

Chimenti, R. J. L.

Ciomartan, D. A.

L. Burgio, D. A. Ciomartan, R. Clark, “Raman microscopy study of the pigments on three illuminated Mediaeval Latin manuscripts,” J. Raman Spectrosc. 28, 79–83 (1997).
[CrossRef]

Clark, R.

L. Burgio, D. A. Ciomartan, R. Clark, “Raman microscopy study of the pigments on three illuminated Mediaeval Latin manuscripts,” J. Raman Spectrosc. 28, 79–83 (1997).
[CrossRef]

Coyne, L. M.

L. M. Coyne, S. W. S. McKeever, D. F. Blake, “Spectroscopic characterization of minerals and their surfaces,” in Vol. 415 of the American Chemical Society ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), p. 490.

Coy-Yll, R.

T. Calderon, M. Aguilar, F. Jaque, R. Coy-Yll, “Thermoluminescence from natural calcites,” J. Phys. 17, 2027–2038 (1984).

De Adams, Salimbene

Salimbene De Adams , Chronica , F. Bernini, ed. (Laterza, Bari, 1942), Vol. II, p. 352. (1983).

De Angelis, P.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

Decrovez, D.

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

deNeufville, J. P.

Edner, H.

Edwards, H. G. M.

H. G. M. Edwards, M. R. D. Seaward, “Raman spectroscopy and lichen biodeterioration,” in Spectrosc. Eur.5, 16–20 (1993).

Englert, P. A.

C. M. Pieters, P. A. Englert, Remote Geochemical Analysis: Elemental and Mineralogical Composition (Cambridge U. Press, Cambridge, U.K., 1990).

Fondelli, M.

M. Fondelli, “Porta del Paradiso: il rilevamento fotogrammetrico,” in Metodo e scienza—Operatività e ricerca nel restauro (Sansoni Editore, Firenze, 1982), pp. 184–185.

Fusi, F.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

Garty, J.

J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
[CrossRef]

Gies, H.

H. Gies, “Activation possibilities and geochemical correlation of photoluminescing carbonates, particularly calcites,” Miner. Deposita 10, 216–227 (1975).
[CrossRef]

Gorbunov, M. Yu.

A. M. Chekalyuk, M. Yu. Gorbunov, “Development of the lidar pump-and-probe technique for remote measuring the efficiency of primary photochemical reactions in leaves of green plants,” EARSeL Adv. Remote Sensing 3(3), 42–56 (1995).

Herzog, I.

I. Scollar, A. Tabbagh, A. Hesse, I. Herzog, Archeological Prospecting and Remote Sensing (Cambridge U. Press, Cambridge, U.K., 1990).

Hesse, A.

I. Scollar, A. Tabbagh, A. Hesse, I. Herzog, Archeological Prospecting and Remote Sensing (Cambridge U. Press, Cambridge, U.K., 1990).

Hoge, F. E.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Pigments,” in Chesapeake Bay Plume StudyJ. W. Campbell, J. P. Thomas, eds., NASA Conf. Pub. Vol. 2188, Washington, D.C., 1981, pp. 349–374.

F. E. Hoge, “Oceanic and terrestrial lidar measurements,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 409–503.

Ikeya, M.

T. Ugumori, M. Ikeya, “Luminescence of CaCO3 under N2 laser excitation and application to archaelogical dating,” Jpn. J. Appl. Phys. 19, 459–465 (1980).
[CrossRef]

Jaque, F.

T. Calderon, M. Aguilar, F. Jaque, R. Coy-Yll, “Thermoluminescence from natural calcites,” J. Phys. 17, 2027–2038 (1984).

Johansson, J.

Kasdan, A.

Krumbein, W. E.

J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
[CrossRef]

Lamenti, G.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Lang, M.

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The Nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sensing 1(2), 20–32 (1992).

Lichtenthaler, H. K.

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The Nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sensing 1(2), 20–32 (1992).

H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in the detection of stress conditions in plants,” in CRC Critical Reviews in Analytical Chemistry (CRC Press, Boca Raton, Fla., 1988), Vol. 19, Suppl. 1, pp. S29–S85.
[CrossRef]

Machel, H. G.

H. G. Machel, R. A. Mason, A. N. Mariano, A. Mucci, “Causes and emissions of luminescence in calcite and dolomite,” in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative ApplicationsC. E. Barker, O. C. Kopp, eds., (SEPM, Tulsa, 1991), pp. 9–25.

Maier, J. L.

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

Mariano, A. N.

A. N. Mariano, P. J. Ring, “Europium-activated cathodoluminescence in minerals,” Geochim. Cosmochim. Acta 39, 649–660 (1975).
[CrossRef]

H. G. Machel, R. A. Mason, A. N. Mariano, A. Mucci, “Causes and emissions of luminescence in calcite and dolomite,” in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative ApplicationsC. E. Barker, O. C. Kopp, eds., (SEPM, Tulsa, 1991), pp. 9–25.

Mason, R. A.

R. A. Mason, “Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, UK,” Chem. Geol. 64, 209–224 (1987).
[CrossRef]

H. G. Machel, R. A. Mason, A. N. Mariano, A. Mucci, “Causes and emissions of luminescence in calcite and dolomite,” in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative ApplicationsC. E. Barker, O. C. Kopp, eds., (SEPM, Tulsa, 1991), pp. 9–25.

Matteini, M.

M. Matteini, A. Moles, Scienza e restauro: metodi d’indagine (Nardini Editore, Firenze, 1984).

Matteucci, G.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

Mazzinghi, P.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).

McKeever, S. W. S.

L. M. Coyne, S. W. S. McKeever, D. F. Blake, “Spectroscopic characterization of minerals and their surfaces,” in Vol. 415 of the American Chemical Society ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), p. 490.

McMutrey, J. E.

Measures, R. M.

R. M. Measures, Laser Remote Chemical Analysis (Wiley, New York, 1988).

R. M. Measures, Laser remote sensing (Wiley Interscience, New York, 1984).

Medlin, W. L.

W. L. Medlin, “Trapping centre in thermoluminescence calcite,” Phys. Rev. 135, A1770–A1779 (1964).
[CrossRef]

Menzel, D. W.

C. S. Yentsch, D. W. Menzel, “A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence,” Deep-Sea Res. 10, 221–231 (1963).

Moles, A.

M. Matteini, A. Moles, Scienza e restauro: metodi d’indagine (Nardini Editore, Firenze, 1984).

Mucci, A.

H. G. Machel, R. A. Mason, A. N. Mariano, A. Mucci, “Causes and emissions of luminescence in calcite and dolomite,” in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative ApplicationsC. E. Barker, O. C. Kopp, eds., (SEPM, Tulsa, 1991), pp. 9–25.

Neuser, R. D.

R. D. Neuser, “A new high-intensity cathodoluminescence microscope and its application to weakly luminishing minerals,” Bochum. Geol. Geotech. Arb. 44, 116–118 (1995).

Newcomb, W. W.

Orlando, A.

R. Chiari, M. Picollo, S. Porcinai, B. Radicati, A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini, L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.

Pantani, L.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

G. Cecchi, M. Bazzani, V. Raimondi, L. Pantani, “Fluorescence lidar in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, Piscataway, N.J., 1994), pp. 637–639.

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–172 (1996).
[CrossRef]

Pedone, V. A.

V. A. Pedone, K. R. Cercone, R. C. Burruss, “Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy,” Chem. Geology 88, 183–190 (1991).
[CrossRef]

Picollo, M.

R. Chiari, M. Picollo, S. Porcinai, B. Radicati, A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini, L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.

Pieters, C. M.

C. M. Pieters, P. A. Englert, Remote Geochemical Analysis: Elemental and Mineralogical Composition (Cambridge U. Press, Cambridge, U.K., 1990).

Pippi, I.

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).

Porcinai, S.

R. Chiari, M. Picollo, S. Porcinai, B. Radicati, A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini, L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.

Radicati, B.

R. Chiari, M. Picollo, S. Porcinai, B. Radicati, A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini, L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).

Raimondi, V.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–172 (1996).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

G. Cecchi, M. Bazzani, V. Raimondi, L. Pantani, “Fluorescence lidar in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, Piscataway, N.J., 1994), pp. 637–639.

Ramseyer, K.

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

Rinderle, U.

H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in the detection of stress conditions in plants,” in CRC Critical Reviews in Analytical Chemistry (CRC Press, Boca Raton, Fla., 1988), Vol. 19, Suppl. 1, pp. S29–S85.
[CrossRef]

Ring, P. J.

A. N. Mariano, P. J. Ring, “Europium-activated cathodoluminescence in minerals,” Geochim. Cosmochim. Acta 39, 649–660 (1975).
[CrossRef]

Scarascia Mugnozza, G.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

Scollar, I.

I. Scollar, A. Tabbagh, A. Hesse, I. Herzog, Archeological Prospecting and Remote Sensing (Cambridge U. Press, Cambridge, U.K., 1990).

Seaward, M. R. D.

H. G. M. Edwards, M. R. D. Seaward, “Raman spectroscopy and lichen biodeterioration,” in Spectrosc. Eur.5, 16–20 (1993).

Snel, J. F. H.

J. F. H. Snel, O. van Kooten, “The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology,” Photosynth. Res. 25, 146–332 (1990).

Stober, F. T.

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The Nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sensing 1(2), 20–32 (1992).

Svanberg, S.

Swift, R. N.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Pigments,” in Chesapeake Bay Plume StudyJ. W. Campbell, J. P. Thomas, eds., NASA Conf. Pub. Vol. 2188, Washington, D.C., 1981, pp. 349–374.

Tabbagh, A.

I. Scollar, A. Tabbagh, A. Hesse, I. Herzog, Archeological Prospecting and Remote Sensing (Cambridge U. Press, Cambridge, U.K., 1990).

Thomas, J. P.

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Pigments,” in Chesapeake Bay Plume StudyJ. W. Campbell, J. P. Thomas, eds., NASA Conf. Pub. Vol. 2188, Washington, D.C., 1981, pp. 349–374.

Tiano, P.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Tirelli, D.

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–172 (1996).
[CrossRef]

Tomaselli, L.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

Ugumori, T.

T. Ugumori, M. Ikeya, “Luminescence of CaCO3 under N2 laser excitation and application to archaelogical dating,” Jpn. J. Appl. Phys. 19, 459–465 (1980).
[CrossRef]

Valentini, R.

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

Van Der Molen, J. M.

J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
[CrossRef]

van Kooten, O.

J. F. H. Snel, O. van Kooten, “The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology,” Photosynth. Res. 25, 146–332 (1990).

Vaughan, D. J.

F. J. Berry, D. J. Vaughan, Chemical Bonding and Spectroscopy in Mineral Chemistry (Chapman & Hall, New York, 1985).
[CrossRef]

Walker, G.

G. Walker, “Mineralogical applications of luminescence techniques,” in Chemical bonding and Spectroscopy, Mineral Chemistry Series,F. J. Berry, D. J. Vaughan, eds. (Chapman & Hall, New York, 1985), pp. 103–140.
[CrossRef]

Wallinder, E.

Wood, F. M.

Yentsch, C. S.

C. S. Yentsch, D. W. Menzel, “A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence,” Deep-Sea Res. 10, 221–231 (1963).

Ann. Chim. Phys. (1)

E. Becquerel, “Recherches sur divers effets lumineux qui resultent de l’action de la lumiere sur les corps. Composition de la lumiere emise (troisiemme memoire),” Ann. Chim. Phys. 3, 40–128 (1859).

Appl. Opt. (3)

Archaeometry (1)

V. Bambin, K. Ramseyer, D. Decrovez, S. J. Burns, J. Chamay, J. L. Maier, “Cathodoluminescence of white limestones: an overview,” Archaeometry 34, 175–183 (1992).
[CrossRef]

Bochum. Geol. Geotech. Arb. (1)

R. D. Neuser, “A new high-intensity cathodoluminescence microscope and its application to weakly luminishing minerals,” Bochum. Geol. Geotech. Arb. 44, 116–118 (1995).

Chem. Geol. (1)

R. A. Mason, “Ion microprobe analysis of trace elements in calcite with an application to the cathodoluminescence zonation of limestone cements from the Lower Carboniferous of South Wales, UK,” Chem. Geol. 64, 209–224 (1987).
[CrossRef]

Chem. Geology (1)

V. A. Pedone, K. R. Cercone, R. C. Burruss, “Activators of photoluminescence in calcite: evidence from high-resolution, laser-excited luminescence spectroscopy,” Chem. Geology 88, 183–190 (1991).
[CrossRef]

Deep-Sea Res. (1)

C. S. Yentsch, D. W. Menzel, “A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence,” Deep-Sea Res. 10, 221–231 (1963).

EARSeL Adv. Remote Sensing (1)

A. M. Chekalyuk, M. Yu. Gorbunov, “Development of the lidar pump-and-probe technique for remote measuring the efficiency of primary photochemical reactions in leaves of green plants,” EARSeL Adv. Remote Sensing 3(3), 42–56 (1995).

EARSeL Adv. Remote Sensing (1)

H. K. Lichtenthaler, F. T. Stober, M. Lang, “The Nature of the different laser-induced fluorescence signatures of plants,” EARSeL Adv. Remote Sensing 1(2), 20–32 (1992).

Geochim. Cosmochim. Acta (1)

A. N. Mariano, P. J. Ring, “Europium-activated cathodoluminescence in minerals,” Geochim. Cosmochim. Acta 39, 649–660 (1975).
[CrossRef]

J. Phys. (1)

T. Calderon, M. Aguilar, F. Jaque, R. Coy-Yll, “Thermoluminescence from natural calcites,” J. Phys. 17, 2027–2038 (1984).

J. Raman Spectrosc. (1)

L. Burgio, D. A. Ciomartan, R. Clark, “Raman microscopy study of the pigments on three illuminated Mediaeval Latin manuscripts,” J. Raman Spectrosc. 28, 79–83 (1997).
[CrossRef]

Jpn. J. Appl. Phys. (1)

T. Ugumori, M. Ikeya, “Luminescence of CaCO3 under N2 laser excitation and application to archaelogical dating,” Jpn. J. Appl. Phys. 19, 459–465 (1980).
[CrossRef]

Miner. Deposita (1)

H. Gies, “Activation possibilities and geochemical correlation of photoluminescing carbonates, particularly calcites,” Miner. Deposita 10, 216–227 (1975).
[CrossRef]

Photosynth. Res. (1)

J. F. H. Snel, O. van Kooten, “The use of chlorophyll fluorescence and other noninvasive spectroscopic techniques in plant stress physiology,” Photosynth. Res. 25, 146–332 (1990).

Phys. Rev. (1)

W. L. Medlin, “Trapping centre in thermoluminescence calcite,” Phys. Rev. 135, A1770–A1779 (1964).
[CrossRef]

Remote Sensing Environ. (1)

G. Cecchi, P. Mazzinghi, L. Pantani, R. Valentini, D. Tirelli, P. De Angelis, “Remote sensing of chlorophyll a fluorescence on vegetation canopies: 1. Near and far field measurement techniques,” Remote Sensing Environ. 47, 18–28 (1994).
[CrossRef]

Remote Sensing Environ. (1)

R. Valentini, G. Cecchi, P. Mazzinghi, G. Scarascia Mugnozza, G. Agati, M. Bazzani, P. De Angelis, F. Fusi, G. Matteucci, V. Raimondi, “Remote sensing of chlorophyll fluorescence on vegetation canopies: 2. physiological significance of fluorescence signal in response to environmental stresses,” Remote Sensing Environ. 47, 29–35 (1994).
[CrossRef]

Sensors Actuators B (1)

M. Bacci, “Fibre optics applications to works of art,” Sensors Actuators B 29, 190–196 (1995).
[CrossRef]

Stud. Conserv. (1)

J. M. Van Der Molen, J. Garty, B. W. Aardema, W. E. Krumbein, “Growth control of algae and cyanobacteria on historic monuments by a mobile UV unit (MUVU),” Stud. Conserv. 25, 71–77 (1980).
[CrossRef]

Other (20)

R. Chiari, M. Picollo, S. Porcinai, B. Radicati, A. Orlando, “Non-destructive reflectance spectroscopy of two authigenic minerals: gypsum and wedellite” in Proceedings of the Second International Symposium on the Oxalate Films in the Conservation of Works of Art, M. Realini, L. Toniolo, eds. (EDITEAM s.a.s., Bologna, 1996), pp. 378–389.

H. G. Machel, R. A. Mason, A. N. Mariano, A. Mucci, “Causes and emissions of luminescence in calcite and dolomite,” in Luminescence Microscopy and Spectroscopy: Qualitative and Quantitative ApplicationsC. E. Barker, O. C. Kopp, eds., (SEPM, Tulsa, 1991), pp. 9–25.

G. Walker, “Mineralogical applications of luminescence techniques,” in Chemical bonding and Spectroscopy, Mineral Chemistry Series,F. J. Berry, D. J. Vaughan, eds. (Chapman & Hall, New York, 1985), pp. 103–140.
[CrossRef]

M. Matteini, A. Moles, Scienza e restauro: metodi d’indagine (Nardini Editore, Firenze, 1984).

L. M. Coyne, S. W. S. McKeever, D. F. Blake, “Spectroscopic characterization of minerals and their surfaces,” in Vol. 415 of the American Chemical Society ACS Symposium Series (American Chemical Society, Washington, D.C., 1990), p. 490.

M. Fondelli, “Porta del Paradiso: il rilevamento fotogrammetrico,” in Metodo e scienza—Operatività e ricerca nel restauro (Sansoni Editore, Firenze, 1982), pp. 184–185.

I. Scollar, A. Tabbagh, A. Hesse, I. Herzog, Archeological Prospecting and Remote Sensing (Cambridge U. Press, Cambridge, U.K., 1990).

C. M. Pieters, P. A. Englert, Remote Geochemical Analysis: Elemental and Mineralogical Composition (Cambridge U. Press, Cambridge, U.K., 1990).

H. G. M. Edwards, M. R. D. Seaward, “Raman spectroscopy and lichen biodeterioration,” in Spectrosc. Eur.5, 16–20 (1993).

F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Pigments,” in Chesapeake Bay Plume StudyJ. W. Campbell, J. P. Thomas, eds., NASA Conf. Pub. Vol. 2188, Washington, D.C., 1981, pp. 349–374.

R. M. Measures, Laser Remote Chemical Analysis (Wiley, New York, 1988).

F. Castagnoli, G. Cecchi, L. Pantani, I. Pippi, B. Radicati, P. Mazzinghi, “Fluorescence lidar for land and sea remote sensing,” in Laser Radar Technology and Applications, J. M. Cruickshank, R. C. Harney, eds. Proc. SPIE663, 212–216 (1986).

G. Cecchi, M. Bazzani, V. Raimondi, L. Pantani, “Fluorescence lidar in vegetation remote sensing: system features and multiplatform operation,” in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, Piscataway, N.J., 1994), pp. 637–639.

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, R. Chiari, “Fluorescence lidar technique for the remote sensing of stony materials in ancient buildings,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 163–172 (1996).
[CrossRef]

Salimbene De Adams , Chronica , F. Bernini, ed. (Laterza, Bari, 1942), Vol. II, p. 352. (1983).

G. Cecchi, L. Pantani, V. Raimondi, D. Tirelli, L. Tomaselli, G. Lamenti, M. Bosco, P. Tiano, “Fluorescence lidar technique for the monitoring of biodeteriogens on the cultural heritage,” in Remote Sensing for Geography, Geology, Land Planning and Cultural Heritage, D. Arroyo-Bishop, R. Carlà, J. B. Lurie, C. M. Marino, A. Panunzi, J. J. Pearson, E. Zilioli, eds., Proc. SPIE2960, 137–147 (1996).
[CrossRef]

F. J. Berry, D. J. Vaughan, Chemical Bonding and Spectroscopy in Mineral Chemistry (Chapman & Hall, New York, 1985).
[CrossRef]

H. K. Lichtenthaler, U. Rinderle, “The role of chlorophyll fluorescence in the detection of stress conditions in plants,” in CRC Critical Reviews in Analytical Chemistry (CRC Press, Boca Raton, Fla., 1988), Vol. 19, Suppl. 1, pp. S29–S85.
[CrossRef]

R. M. Measures, Laser remote sensing (Wiley Interscience, New York, 1984).

F. E. Hoge, “Oceanic and terrestrial lidar measurements,” in Laser Remote Chemical Analysis, R. M. Measures, ed. (Wiley, New York, 1988), pp. 409–503.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Block diagram of the Flidar3 system.

Fig. 2
Fig. 2

Van containing Flidar3 during its operation at Parma. In the background, the Baptistery.

Fig. 3
Fig. 3

Lidar fluorescence spectra (λexc = 308 nm) obtained for the Baptistery facade. The spectra refer to reddish blocks of the coating.

Fig. 4
Fig. 4

Lidar fluorescence spectra (λexc = 308 nm) obtained for the Baptistery facade. The spectra refer to a whitish block of the coating (dashed curve) and to a reddish one (continuous curve).

Fig. 5
Fig. 5

Lidar fluorescence spectra (λexc = 308 nm) obtained for the Protiro of the Cathedral; the spectra refer to the red column (continuous curve) and to a white block on the capital (dashed curve).

Fig. 6
Fig. 6

Lidar fluorescence spectra obtained on photoautotrophic biodeteriogens on the Cathedral facade with 308-nm excitation wavelength.

Fig. 7
Fig. 7

Lidar fluorescence spectra obtained on photoautotrophic biodeteriogens on the Cathedral facade with 480-nm excitation wavelength.

Fig. 8
Fig. 8

Historical prospectors: lidar fluorescence spectra (λexc = 308 nm) of three different samples coming from the same site in the Bonaldi extraction area (Monte S. Ambrogio, Verona, Italy). BOV1 (dotted curve) is a white sample, while BOV2 (solid curve) and BOV3 (dashed curve) are red samples.

Fig. 9
Fig. 9

Historical prospectors: lidar fluorescence spectra (λexc = 308 nm) of the BON1 sample coming from another site in the Bonaldi extraction area (Monte S. Ambrogio, Verona, Italy).

Fig. 10
Fig. 10

Recent prospectors: lidar fluorescence spectra (λexc = 308 nm) of the ASI1 (dashed curve) and ASI2 (solid curve) samples coming from the Gherardi extraction area (Asiago, Vicenza, Italy).

Fig. 11
Fig. 11

Recent prospectors: lidar fluorescence spectra (λexc = 308 nm) detected in different areas of the same ASI1 slab sample.

Fig. 12
Fig. 12

Recent prospectors: lidar fluorescence spectra (λexc = 308 nm) of the ASI1 (solid curves) and ASI2 (dashed curves) samples. Here the spectra are normalized to the peak at 450 nm to emphasize their different spectral shapes.

Fig. 13
Fig. 13

Historical and recent prospectors: comparison among the lidar fluorescence spectra of the red samples (λexc = 308 nm).

Fig. 14
Fig. 14

Historical and recent prospectors: comparison among the lidar fluorescence spectra of the red samples (λexc = 308 nm). In this graph the spectra are normalized to the peak at 450 nm.

Tables (2)

Tables Icon

Table 1 Main Technical Features of the Flidar3 lidar system

Tables Icon

Table 2 Main Petrographic Features of Samples from Historic (BOV and BON Samples) and Recent (ASI samples) Extraction Areas

Metrics