Abstract

Results of a detailed experimental investigation aimed at reducing the thermal loading problem in a cw Cr4+:forsterite laser at elevated temperatures are presented. From a Cr4+:forsterite crystal with a differential absorption coefficient of 0.57 cm-1, as much as 900 mW of cw output power has been obtained at 1.26 μm and at a crystal boundary temperature of 15 °C with an absorbed pump power of only 4.5 W at 1.06 μm. No chopping of the pump beam was necessary. An efficient radiative cooling technique was further employed to cool the laser and no subsequent power fading was observed. To the author’s knowledge, the measured absorbed power slope efficiency of 29.5% represents the highest cw power performance reported to date from a Cr4+:forsterite laser pumped by a Nd:YAG laser around room temperature. The role of the low differential absorption coefficient in the reduction of thermal loading is further elucidated by presenting comparative cw power performance data with a second Cr4+:forsterite crystal having a differential absorption coefficient of 1.78 cm-1 in the temperature range between 12 and 35 °C. Finally, some interesting multipulse effects of the laser observed in the millisecond regime during quasi-cw operation at 50% duty cycle are described.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  2. V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
    [CrossRef] [PubMed]
  3. A. Seas, V. Petricevic, R. R. Alfano, “Continuous-wave mode-locked operation of a chromium-doped forsterite laser,” Opt. Lett. 16, 1668–1670 (1991).
    [CrossRef] [PubMed]
  4. A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
    [CrossRef] [PubMed]
  5. A. Seas, V. Petricevic, R. R. Alfano, “Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937–939 (1992).
    [CrossRef] [PubMed]
  6. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826–828 (1993).
    [CrossRef] [PubMed]
  7. Y. Pang, V. Yanovsky, F. Wise, B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt. Lett. 18, 1168–1170 (1993).
    [CrossRef] [PubMed]
  8. T. J. Carrig, C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1991).
    [CrossRef] [PubMed]
  9. T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
    [CrossRef]
  10. A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
    [CrossRef]
  11. E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium–aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
    [CrossRef]
  12. B. Golubovic, B. E. Bouma, I. P. Bilinsky, J. G. Fujimoto, V. P. Mikhailov, “Thin crystal, room-temperature Cr4+:forsterite laser using near-infrared pumping,” Opt. Lett. 21, 1993–1995 (1996).
    [CrossRef] [PubMed]
  13. R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.
  14. A. Sennaroglu, C. R. Pollock, H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
    [CrossRef]
  15. A. Sennaroglu, “Continuous wave thermal loading in saturable absorbers: theory and experiment,” Appl. Opt. 36, 9528–9535 (1997).
    [CrossRef]
  16. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
    [CrossRef]
  17. V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.
  18. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
    [CrossRef]

1997

1996

1995

A. Sennaroglu, C. R. Pollock, H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
[CrossRef]

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

1994

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

1993

1992

1991

1989

1988

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Alfano, R. R.

Baryshevski, V. G.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Behrens, E. G.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium–aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Bilinsky, I. P.

Bouma, B. E.

Carrig, T. J.

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

French, P. M. W.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Fujimoto, J. G.

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Golubovic, B.

Ivanov, A. A.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Jani, M. G.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium–aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Jonusauskas, G.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Kimaev, A. E.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Korzhik, M. V.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Livshitz, M. G.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Meilman, M. L.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Mellish, R.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Mikhailov, V. P.

Minkov, B. I.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Y. Pang, V. Yanovsky, F. Wise, B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt. Lett. 18, 1168–1170 (1993).
[CrossRef] [PubMed]

Minkov, B. J.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Mishkel, I. I.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Nathel, H.

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Oberle, J.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Pang, Y.

Payne, S. A.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Petricevic, V.

Pinto, A.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium–aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Pollock, C. R.

Powell, R. C.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium–aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Rulliere, C.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Seas, A.

Sennaroglu, A.

Shkandarevich, A. P.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Tarasov, A. A.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Taylor, J. R.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Tong, Y. P.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Verdun, H. R.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium–aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Wise, F.

Yanovsky, V.

Appl. Opt.

Appl. Phys. Lett.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

IEEE J. Quantum Electron.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium–aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. A. Ivanov, B. I. Minkov, G. Jonusauskas, J. Oberle, C. Rulliere, “Influence of Cr4+ ion concentration on cw operation of forsterite laser and its relation to thermal problems,” Opt. Commun. 116, 131–135 (1995).
[CrossRef]

Opt. Lett.

B. Golubovic, B. E. Bouma, I. P. Bilinsky, J. G. Fujimoto, V. P. Mikhailov, “Thin crystal, room-temperature Cr4+:forsterite laser using near-infrared pumping,” Opt. Lett. 21, 1993–1995 (1996).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

A. Seas, V. Petricevic, R. R. Alfano, “Continuous-wave mode-locked operation of a chromium-doped forsterite laser,” Opt. Lett. 16, 1668–1670 (1991).
[CrossRef] [PubMed]

A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
[CrossRef] [PubMed]

A. Seas, V. Petricevic, R. R. Alfano, “Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937–939 (1992).
[CrossRef] [PubMed]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826–828 (1993).
[CrossRef] [PubMed]

Y. Pang, V. Yanovsky, F. Wise, B. I. Minkov, “Self-mode-locked Cr:forsterite laser,” Opt. Lett. 18, 1168–1170 (1993).
[CrossRef] [PubMed]

T. J. Carrig, C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1991).
[CrossRef] [PubMed]

Other

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

V. G. Baryshevski, M. V. Korzhik, M. G. Livshitz, A. A. Tarasov, A. E. Kimaev, I. I. Mishkel, M. L. Meilman, B. J. Minkov, A. P. Shkandarevich, “Properties of forsterite and the performance of forsterite lasers with lasers and flashlamp pumping,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 26–34.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of the cw radiatively cooled Cr4+:forsterite laser. See Section 2 for a description of the abbreviations.

Fig. 2
Fig. 2

Variation of the fractional crystal absorption as a function of the incident pump power at a crystal boundary temperature of 15 °C.

Fig. 3
Fig. 3

Normalized output power at 1.26 μm as a function of the relative displacement of the focusing mirror (M2 in Fig. 1).

Fig. 4
Fig. 4

Variation of the cw laser output power at 1.26 μm as a function of the absorbed pump power for the 2.4% and 4.7% transmitting output couplers at a crystal boundary temperature of (a) 15 °C and (b) 25 °C.

Fig. 5
Fig. 5

Tuning curve for the laser at 15 °C with the 4.7% transmitting output coupler and with an incident pump power of 7 W.

Fig. 6
Fig. 6

Variation of the cw output power at 1.26 μm as a function of crystal boundary temperature with an incident pump power of 6.2 W for sample 1 (α p0 = 0.57 cm-1) and sample 2 (α p0 = 1.78 cm-1).

Fig. 7
Fig. 7

Variation of the incident threshold pump power as a function of crystal boundary temperature for sample 1 (α p0 = 0.57 cm-1) and sample 2 (α p0 = 1.78 cm-1).

Fig. 8
Fig. 8

(a) Double- and (b) triple-pulse output from the Cr4+:forsterite laser observed during quasi-cw operation by misaligning the end mirrors.

Metrics