Abstract

An external cavity 1540-nm diode laser was frequency doubled in a 3-cm-long periodically poled LiNbO3 waveguide doubler with 150% W-1 conversion efficiency, thereby generating more than 3 μW at 770 nm. Second-harmonic light was used to detect and lock to sub-Doppler lines of the 39K D 1 transition.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 106–114 (1993).
    [CrossRef]
  2. Y. C. Chung, “Frequency-locked 1.3 and 1.5 μm semiconductor lasers for lightwave systems applications,” J. Lightwave Technol. 8, 869–876 (1990).
    [CrossRef]
  3. O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave Technol. 9, 1344–1352 (1991).
    [CrossRef]
  4. D. J. Webb, J. D. C. Jones, D. A. Jackson, “Frequency-locked diode laser for interferometric sensing systems,” Electron. Lett. 24, 1002–1004 (1988).
    [CrossRef]
  5. H. Sasada, K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
    [CrossRef] [PubMed]
  6. T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Lasers (Artech House, Norwood, Mass., 1995).
  7. M. de Labachelerie, K. Nakagawa, M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
    [CrossRef] [PubMed]
  8. A. J. Lucero, Y. C. Chung, S. Reilly, R. W. Tkach, “Saturation measurements of excited-state transitions in noble gases using the optogalvanic effect,” Opt. Lett. 16, 849–851 (1991);U. H. P. Fischer, C. V. Helmolt, “Saturation and isotopic shift of the Kr 84 excited-state transition at 1547.825 nm,” IEEE Photon. Technol. Lett. 27, 65–67 (1995).
    [CrossRef] [PubMed]
  9. M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
    [CrossRef]
  10. V. Mahal, A. Arie, M. A. Arbore, M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
    [CrossRef] [PubMed]
  11. J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
    [CrossRef] [PubMed]
  12. W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
    [CrossRef]
  13. M. A. Arbore, M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
    [CrossRef] [PubMed]
  14. A. A. Radzig, B. M. Smirnov, Reference Data on Atoms, Molecules and Ions (Springer-Verlag, Berlin, 1985), p. 113.
  15. A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
    [CrossRef] [PubMed]
  16. M. Zhu, R. W. Standridge, “Optical frequency standard for optical fiber communication based on the Rb 5s → 5d two-photon transition,” Opt. Lett. 22, 730–732 (1997).
    [CrossRef] [PubMed]

1997 (2)

1996 (2)

1995 (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

1994 (2)

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

M. de Labachelerie, K. Nakagawa, M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[CrossRef] [PubMed]

1993 (1)

1991 (2)

1990 (2)

Y. C. Chung, “Frequency-locked 1.3 and 1.5 μm semiconductor lasers for lightwave systems applications,” J. Lightwave Technol. 8, 869–876 (1990).
[CrossRef]

H. Sasada, K. Yamada, “Calibration lines of HCN in the 1.5-μm region,” Appl. Opt. 29, 3535–3547 (1990).
[CrossRef] [PubMed]

1988 (1)

D. J. Webb, J. D. C. Jones, D. A. Jackson, “Frequency-locked diode laser for interferometric sensing systems,” Electron. Lett. 24, 1002–1004 (1988).
[CrossRef]

Akulshin, A. M.

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

Arbore, M. A.

Arie, A.

Barwood, G. P.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Bortz, M. L.

Breton, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Byer, R. L.

Chung, Y. C.

Cyr, N.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

de Labachelerie, M.

Fejer, M. M.

Hall, J. L.

Humphreys, D. A.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Ikegami, T.

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Lasers (Artech House, Norwood, Mass., 1995).

Ishida, O.

O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave Technol. 9, 1344–1352 (1991).
[CrossRef]

Jackson, D. A.

D. J. Webb, J. D. C. Jones, D. A. Jackson, “Frequency-locked diode laser for interferometric sensing systems,” Electron. Lett. 24, 1002–1004 (1988).
[CrossRef]

Jones, J. D. C.

D. J. Webb, J. D. C. Jones, D. A. Jackson, “Frequency-locked diode laser for interferometric sensing systems,” Electron. Lett. 24, 1002–1004 (1988).
[CrossRef]

Julien, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Jungner, P.

Knight, D. J. E.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Latrasse, C.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Lucero, A. J.

Mahal, V.

Nakagawa, K.

Ohtsu, M.

M. de Labachelerie, K. Nakagawa, M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[CrossRef] [PubMed]

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

Pharaoh, K. I.

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Radzig, A. A.

A. A. Radzig, B. M. Smirnov, Reference Data on Atoms, Molecules and Ions (Springer-Verlag, Berlin, 1985), p. 113.

Reilly, S.

Sakai, Y.

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Lasers (Artech House, Norwood, Mass., 1995).

Sasada, H.

Smirnov, B. M.

A. A. Radzig, B. M. Smirnov, Reference Data on Atoms, Molecules and Ions (Springer-Verlag, Berlin, 1985), p. 113.

Standridge, R. W.

Sudo, S.

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Lasers (Artech House, Norwood, Mass., 1995).

Swartz, S.

Tetu, M.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Tkach, R. W.

Toba, H.

O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave Technol. 9, 1344–1352 (1991).
[CrossRef]

Tremblay, P.

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

Wang, W.

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

Webb, D. J.

D. J. Webb, J. D. C. Jones, D. A. Jackson, “Frequency-locked diode laser for interferometric sensing systems,” Electron. Lett. 24, 1002–1004 (1988).
[CrossRef]

Yamada, K.

Ye, J.

Zhu, M.

Appl. Opt. (1)

Electron. Lett. (1)

D. J. Webb, J. D. C. Jones, D. A. Jackson, “Frequency-locked diode laser for interferometric sensing systems,” Electron. Lett. 24, 1002–1004 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Wang, A. M. Akulshin, M. Ohtsu, “Pump-probe spectroscopy in potassium using an AlGaAs laser and the second harmonic generation of an InGaAsP laser for frequency stabilization and linking,” IEEE Photon. Technol. Lett. 6, 95–97 (1994).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Breton, P. Tremblay, C. Julien, N. Cyr, M. Tetu, C. Latrasse, “Optically-pumped rubidium as a frequency standard at 196 THz,” IEEE Trans. Instrum. Meas. 44, 162–165 (1995).
[CrossRef]

J. Lightwave Technol. (2)

Y. C. Chung, “Frequency-locked 1.3 and 1.5 μm semiconductor lasers for lightwave systems applications,” J. Lightwave Technol. 8, 869–876 (1990).
[CrossRef]

O. Ishida, H. Toba, “Lightwave synthesizer with lock-in detected frequency references,” J. Lightwave Technol. 9, 1344–1352 (1991).
[CrossRef]

Opt. Lett. (7)

M. de Labachelerie, K. Nakagawa, M. Ohtsu, “Ultranarrow 13C2H2 saturated-absorption lines at 1.5 μm,” Opt. Lett. 19, 840–842 (1994).
[CrossRef] [PubMed]

A. J. Lucero, Y. C. Chung, S. Reilly, R. W. Tkach, “Saturation measurements of excited-state transitions in noble gases using the optogalvanic effect,” Opt. Lett. 16, 849–851 (1991);U. H. P. Fischer, C. V. Helmolt, “Saturation and isotopic shift of the Kr 84 excited-state transition at 1547.825 nm,” IEEE Photon. Technol. Lett. 27, 65–67 (1995).
[CrossRef] [PubMed]

V. Mahal, A. Arie, M. A. Arbore, M. M. Fejer, “Quasi-phase-matched frequency doubling in a waveguide of a 1560-nm diode laser and locking to the rubidium D2 absorption lines,” Opt. Lett. 21, 1217–1219 (1996).
[CrossRef] [PubMed]

J. Ye, S. Swartz, P. Jungner, J. L. Hall, “Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state,” Opt. Lett. 21, 1280–1282 (1996).
[CrossRef] [PubMed]

M. A. Arbore, M. M. Fejer, “Singly resonant optical parametric oscillation in periodically poled lithium niobate waveguides,” Opt. Lett. 22, 151–153 (1997).
[CrossRef] [PubMed]

A. Arie, M. L. Bortz, M. M. Fejer, R. L. Byer, “Iodine spectroscopy and absolute frequency stabilization with the second harmonic of the 1319-nm Nd:YAG laser,” Opt. Lett. 18, 1757–1759 (1993).
[CrossRef] [PubMed]

M. Zhu, R. W. Standridge, “Optical frequency standard for optical fiber communication based on the Rb 5s → 5d two-photon transition,” Opt. Lett. 22, 730–732 (1997).
[CrossRef] [PubMed]

Other (3)

A. A. Radzig, B. M. Smirnov, Reference Data on Atoms, Molecules and Ions (Springer-Verlag, Berlin, 1985), p. 113.

T. Ikegami, S. Sudo, Y. Sakai, Frequency Stabilization of Semiconductor Lasers (Artech House, Norwood, Mass., 1995).

D. J. E. Knight, K. I. Pharaoh, G. P. Barwood, D. A. Humphreys, “A review of user requirements for, and practical possibilities for, frequency standards for the optical fibre communication bands,” in Frequency Stabilized Lasers and Their Applications, Y. C. Chung, ed., Proc. SPIE1837, 106–114 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Generated second-harmonic power in the periodically poled LiNbO3 waveguide doubler as a function of the fundamental wavelength.

Fig. 2
Fig. 2

Experimental setup for locking the external cavity laser to potassium sub-Doppler lines: PD, photodetector; PBS, polarizing beam splitter.

Fig. 3
Fig. 3

Normalized transmission through a 7.5-cm potassium cell at different cell temperatures.

Fig. 4
Fig. 4

Sub-Doppler spectrum of the potassium D 1 transition. The unlabeled strong transitions are crossover lines, and the weak lines (labeled I and II) are 41K transitions. Lock-in time constant: 10 ms. The inset shows the energy levels of 39K.

Fig. 5
Fig. 5

(a) Time trace of the error signal frequency variations at 1540 nm while the laser was locked to the a/b crossover line. (b) Power spectral densities of the error and actuator signals.

Metrics