Abstract

A spontaneous Raman imaging system (SRIS) has been developed that can monitor chemical oxygen–iodine laser (COIL) singlet oxygen generator (SOG) performance in real time. This system permits one to monitor directly the SOG performance by measuring O2(a 1Δ) and O2(X 3Σ) simultaneously with a single intensified CCD array at the exit of an imaging monochromator. We present the results from tests conducted on a 0.25-mol SOG using a prototype Raman system. Performance and validation of a highly sensitive SRIS that was designed and built specifically for SOG diagnostics are discussed. Detection and possible interferences of other species relevant to COIL devices such as I2 and Cl2 are investigated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. McDermott, N. R. Pchelkin, D. L. Benard, R. R. Bousek, “An electronic transition laser,” Appl. Phys. Lett. 32, 469–470 (1978).
    [CrossRef]
  2. P. V. Avizonis, “Chemically pumped electronic transition lasers,” in Gas Flow and Chemical Lasers, M. Onorato, ed. (Plenum, New York, 1982), p. 1.
  3. H. Fujii, S. Yoshida, M. Iizuka, T. Atsuta, “Long-term stability in the operation of a chemical oxygen-iodine laser for industrial use,” J. Appl. Phys. 66, 1033–1037 (1989).
    [CrossRef]
  4. M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Water vapor content in the active medium of an oxygen-iodine chemical laser,” Sov. J. Quantum Electron. 17, 320–324 (1987).
    [CrossRef]
  5. P. Keating, L. Hanko, C. A. Helms, G. P. Perram, Absolute Detection of O2(a1Δ) Concentrations. Final Report WL-TR-90-85 (Weapons Laboratory, Air Force Systems Command, Kirtland Air Force Base, N.M., 1985).
  6. M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, K. R. McManus, “Diode laser-based measurements of water vapor and ground state oxygen in chemical oxygen iodine lasers,” at 25th American Institute of Aeronautics and Astronautics Plasmadynamics and Lasers Conference, 20–23 June 1994, Colorado Springs, Colorado (American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1994).
  7. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Kent, UK, 1988).
  8. L. F. Rubin, V. T. Gylys, “Measurement of the Raman cross section of O2(a1Δg),” Opt. Lett. 22, 1347–1349 (1997).
    [CrossRef]
  9. D. W. Setser, ed., Reactive Intermediates in the Gas Phase (Academic, New York, 1979), p. 203.
  10. N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, V. A. Shcheglov, Chemical Lasers (Springer-Verlag, New York, 1990), pp. 328–334.
  11. A. Weber, ed., Raman Spectroscopy of Gases and Liquids (Springer-Verlag, New York, 1979), pp. 203–253.
  12. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Rheinhold, New York, 1950), pp. 389–392.
  13. D. L. Rousseau, P. F. Williams, “Resonance Raman scattering of light from a diatomic molecule,” J. Chem. Phys. 64, 3519–3537 (1976).
    [CrossRef]

1997 (1)

1989 (1)

H. Fujii, S. Yoshida, M. Iizuka, T. Atsuta, “Long-term stability in the operation of a chemical oxygen-iodine laser for industrial use,” J. Appl. Phys. 66, 1033–1037 (1989).
[CrossRef]

1987 (1)

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Water vapor content in the active medium of an oxygen-iodine chemical laser,” Sov. J. Quantum Electron. 17, 320–324 (1987).
[CrossRef]

1978 (1)

W. E. McDermott, N. R. Pchelkin, D. L. Benard, R. R. Bousek, “An electronic transition laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

1976 (1)

D. L. Rousseau, P. F. Williams, “Resonance Raman scattering of light from a diatomic molecule,” J. Chem. Phys. 64, 3519–3537 (1976).
[CrossRef]

Allen, M. G.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, K. R. McManus, “Diode laser-based measurements of water vapor and ground state oxygen in chemical oxygen iodine lasers,” at 25th American Institute of Aeronautics and Astronautics Plasmadynamics and Lasers Conference, 20–23 June 1994, Colorado Springs, Colorado (American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1994).

Atsuta, T.

H. Fujii, S. Yoshida, M. Iizuka, T. Atsuta, “Long-term stability in the operation of a chemical oxygen-iodine laser for industrial use,” J. Appl. Phys. 66, 1033–1037 (1989).
[CrossRef]

Avizonis, P. V.

P. V. Avizonis, “Chemically pumped electronic transition lasers,” in Gas Flow and Chemical Lasers, M. Onorato, ed. (Plenum, New York, 1982), p. 1.

Bashkin, A. S.

N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, V. A. Shcheglov, Chemical Lasers (Springer-Verlag, New York, 1990), pp. 328–334.

Basov, N. G.

N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, V. A. Shcheglov, Chemical Lasers (Springer-Verlag, New York, 1990), pp. 328–334.

Benard, D. L.

W. E. McDermott, N. R. Pchelkin, D. L. Benard, R. R. Bousek, “An electronic transition laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Bousek, R. R.

W. E. McDermott, N. R. Pchelkin, D. L. Benard, R. R. Bousek, “An electronic transition laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Carleton, K. L.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, K. R. McManus, “Diode laser-based measurements of water vapor and ground state oxygen in chemical oxygen iodine lasers,” at 25th American Institute of Aeronautics and Astronautics Plasmadynamics and Lasers Conference, 20–23 June 1994, Colorado Springs, Colorado (American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1994).

Davis, S. J.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, K. R. McManus, “Diode laser-based measurements of water vapor and ground state oxygen in chemical oxygen iodine lasers,” at 25th American Institute of Aeronautics and Astronautics Plasmadynamics and Lasers Conference, 20–23 June 1994, Colorado Springs, Colorado (American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1994).

Eckbreth, A. C.

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Kent, UK, 1988).

Fujii, H.

H. Fujii, S. Yoshida, M. Iizuka, T. Atsuta, “Long-term stability in the operation of a chemical oxygen-iodine laser for industrial use,” J. Appl. Phys. 66, 1033–1037 (1989).
[CrossRef]

Gylys, V. T.

Hanko, L.

P. Keating, L. Hanko, C. A. Helms, G. P. Perram, Absolute Detection of O2(a1Δ) Concentrations. Final Report WL-TR-90-85 (Weapons Laboratory, Air Force Systems Command, Kirtland Air Force Base, N.M., 1985).

Helms, C. A.

P. Keating, L. Hanko, C. A. Helms, G. P. Perram, Absolute Detection of O2(a1Δ) Concentrations. Final Report WL-TR-90-85 (Weapons Laboratory, Air Force Systems Command, Kirtland Air Force Base, N.M., 1985).

Herzberg, G.

G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Rheinhold, New York, 1950), pp. 389–392.

Igoshin, V. I.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Water vapor content in the active medium of an oxygen-iodine chemical laser,” Sov. J. Quantum Electron. 17, 320–324 (1987).
[CrossRef]

N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, V. A. Shcheglov, Chemical Lasers (Springer-Verlag, New York, 1990), pp. 328–334.

Iizuka, M.

H. Fujii, S. Yoshida, M. Iizuka, T. Atsuta, “Long-term stability in the operation of a chemical oxygen-iodine laser for industrial use,” J. Appl. Phys. 66, 1033–1037 (1989).
[CrossRef]

Keating, P.

P. Keating, L. Hanko, C. A. Helms, G. P. Perram, Absolute Detection of O2(a1Δ) Concentrations. Final Report WL-TR-90-85 (Weapons Laboratory, Air Force Systems Command, Kirtland Air Force Base, N.M., 1985).

Kessler, W. J.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, K. R. McManus, “Diode laser-based measurements of water vapor and ground state oxygen in chemical oxygen iodine lasers,” at 25th American Institute of Aeronautics and Astronautics Plasmadynamics and Lasers Conference, 20–23 June 1994, Colorado Springs, Colorado (American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1994).

Kupriyanov, N. L.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Water vapor content in the active medium of an oxygen-iodine chemical laser,” Sov. J. Quantum Electron. 17, 320–324 (1987).
[CrossRef]

McDermott, W. E.

W. E. McDermott, N. R. Pchelkin, D. L. Benard, R. R. Bousek, “An electronic transition laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

McManus, K. R.

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, K. R. McManus, “Diode laser-based measurements of water vapor and ground state oxygen in chemical oxygen iodine lasers,” at 25th American Institute of Aeronautics and Astronautics Plasmadynamics and Lasers Conference, 20–23 June 1994, Colorado Springs, Colorado (American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1994).

Oraevsky, A. N.

N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, V. A. Shcheglov, Chemical Lasers (Springer-Verlag, New York, 1990), pp. 328–334.

Pchelkin, N. R.

W. E. McDermott, N. R. Pchelkin, D. L. Benard, R. R. Bousek, “An electronic transition laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

Perram, G. P.

P. Keating, L. Hanko, C. A. Helms, G. P. Perram, Absolute Detection of O2(a1Δ) Concentrations. Final Report WL-TR-90-85 (Weapons Laboratory, Air Force Systems Command, Kirtland Air Force Base, N.M., 1985).

Rousseau, D. L.

D. L. Rousseau, P. F. Williams, “Resonance Raman scattering of light from a diatomic molecule,” J. Chem. Phys. 64, 3519–3537 (1976).
[CrossRef]

Rubin, L. F.

Shcheglov, V. A.

N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, V. A. Shcheglov, Chemical Lasers (Springer-Verlag, New York, 1990), pp. 328–334.

Williams, P. F.

D. L. Rousseau, P. F. Williams, “Resonance Raman scattering of light from a diatomic molecule,” J. Chem. Phys. 64, 3519–3537 (1976).
[CrossRef]

Yoshida, S.

H. Fujii, S. Yoshida, M. Iizuka, T. Atsuta, “Long-term stability in the operation of a chemical oxygen-iodine laser for industrial use,” J. Appl. Phys. 66, 1033–1037 (1989).
[CrossRef]

Zagidullin, M. V.

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Water vapor content in the active medium of an oxygen-iodine chemical laser,” Sov. J. Quantum Electron. 17, 320–324 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

W. E. McDermott, N. R. Pchelkin, D. L. Benard, R. R. Bousek, “An electronic transition laser,” Appl. Phys. Lett. 32, 469–470 (1978).
[CrossRef]

J. Appl. Phys. (1)

H. Fujii, S. Yoshida, M. Iizuka, T. Atsuta, “Long-term stability in the operation of a chemical oxygen-iodine laser for industrial use,” J. Appl. Phys. 66, 1033–1037 (1989).
[CrossRef]

J. Chem. Phys. (1)

D. L. Rousseau, P. F. Williams, “Resonance Raman scattering of light from a diatomic molecule,” J. Chem. Phys. 64, 3519–3537 (1976).
[CrossRef]

Opt. Lett. (1)

Sov. J. Quantum Electron. (1)

M. V. Zagidullin, V. I. Igoshin, N. L. Kupriyanov, “Water vapor content in the active medium of an oxygen-iodine chemical laser,” Sov. J. Quantum Electron. 17, 320–324 (1987).
[CrossRef]

Other (8)

P. Keating, L. Hanko, C. A. Helms, G. P. Perram, Absolute Detection of O2(a1Δ) Concentrations. Final Report WL-TR-90-85 (Weapons Laboratory, Air Force Systems Command, Kirtland Air Force Base, N.M., 1985).

M. G. Allen, K. L. Carleton, S. J. Davis, W. J. Kessler, K. R. McManus, “Diode laser-based measurements of water vapor and ground state oxygen in chemical oxygen iodine lasers,” at 25th American Institute of Aeronautics and Astronautics Plasmadynamics and Lasers Conference, 20–23 June 1994, Colorado Springs, Colorado (American Institute of Aeronautics and Astronautics, Inc., Washington, D.C., 1994).

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Kent, UK, 1988).

D. W. Setser, ed., Reactive Intermediates in the Gas Phase (Academic, New York, 1979), p. 203.

N. G. Basov, A. S. Bashkin, V. I. Igoshin, A. N. Oraevsky, V. A. Shcheglov, Chemical Lasers (Springer-Verlag, New York, 1990), pp. 328–334.

A. Weber, ed., Raman Spectroscopy of Gases and Liquids (Springer-Verlag, New York, 1979), pp. 203–253.

G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand Rheinhold, New York, 1950), pp. 389–392.

P. V. Avizonis, “Chemically pumped electronic transition lasers,” in Gas Flow and Chemical Lasers, M. Onorato, ed. (Plenum, New York, 1982), p. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of a spontaneous Raman measurement on a chemical laser device.

Fig. 2
Fig. 2

Time-averaged Raman spectrum acquired in the plenum of a COIL device. The numbers indicate the area under the respective peaks.

Fig. 3
Fig. 3

Schematic of the collection system of a Raman diagnostic.

Fig. 4
Fig. 4

Raman spectrum acquired with a 527-nm pump (20 W), 0.5-s integration time, and 0.6 Torr of O2.

Fig. 5
Fig. 5

Raman spectrum of a sparger flow. The pump laser is 20 W of 527 nm that probes a flow comprised of approximately 0.5 Torr of O2(a 1Δ) and 0.5 Torr of O2(X 3Σ) with a small tracer of N2 present. The integration time is 60 s.

Fig. 6
Fig. 6

(a) Raman spectrum of a static cell containing a 20-Torr, 1:1 mixture of O2/Cl2. The pump laser is 20 W of 527 nm, and the integration period is 10 s. (b) Raman spectrum of a static cell of 10 Torr of O2 with the same pump source.

Fig. 7
Fig. 7

Raman spectrum of a static cell with a mixture of 0.3 Torr of I2 and 10 Torr of air. The pump source is a single longitudinal mode, doubled Nd+:YAG that is temperature tuned on and off an I2 absorption line.

Fig. 8
Fig. 8

Raman spectrum of the same static cell as in Fig. 7 except with a tripled Nd+:YAG pump source.

Tables (1)

Tables Icon

Table 1 Parameters that Predict the Relative Sensitivity of Raman Detection of O2(a1Δ)a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

O 2 ( a 1 Δ ) + I ( 2 P 3 / 2 O 2 ( X 3 Σ ) + I * ( 2 P 1 / 2 ) , Δ E = - 269   cm - 1 .
%   yield = O 2 ( a )   counts O 2 ( a )   counts + χ O 2 ( X )   counts   σ O 2 ( a ) / O 2 ( X ) ,
%   yield = 257,827 / 878,312 0.45 0.95 + 257,827 = 0.40 .

Metrics