Abstract

A fluorescence detection scheme coupled to a highly sensitive nitrogen-cooled CCD camera is used to image the spatial distribution of a low-density falling rubidium atomic cloud released from an optical trap. The falling cloud passes through a thin probe laser beam tuned to resonance. The performance of the scheme is illustrated in the analysis of cold atomic clouds collimated by pinholes during their free fall under the influence of gravity. Clouds of approximately 104 atoms and with typically 106 at./cm3 density are analyzed spatially with 24-μm resolution. This method is compared with different atomic cloud imaging techniques.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Monroe, W. Swann, H. Robinson, C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
    [CrossRef] [PubMed]
  2. I. Serre, “Interférometrie atomique de type Young: réalisation et caractérisation de la source d’atomes de rubidium froids et de la méthode de détection intégrale,” PhD dissertation (Université de Paris XI, Paris, 1996).
  3. M. de Labachelerie, P. Cérez, “An 850 nm semi-conductor laser tunable over a 300A range,” Opt. Commun. 55, 174–178 (1985).
    [CrossRef]
  4. B. Sheehly, S. Q. Shang, R. Watts, S. Hatamian, H. Metcalf, “Diode-laser deceleration and collimation of a rubidium beam,” J. Opt. Soc. Am. B 6, 2165–2170 (1989).
    [CrossRef]
  5. F. Shimizu, K. Shimizu, H. Takuma, “Double-slit interference with ultracold metastable neon atoms,” Phys. Rev. A 46, R17–20 (1992).
    [CrossRef] [PubMed]
  6. C. Kurtsiefer, J. Mlynek, “A 2-dimensional detector with high spatial and temporal resolution for metastable rare gas atoms,” Appl. Phys. B 64, 85–90 (1997).
    [CrossRef]
  7. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
    [CrossRef] [PubMed]
  8. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
    [CrossRef] [PubMed]
  9. M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
    [CrossRef] [PubMed]
  10. C. C. Bradley, S. A. Sackett, R. G. Hulet, “Bose–Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 78, 985–988 (1997).
    [CrossRef]
  11. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).
  12. F. Ruschewitz, D. Battermann, J. L. Peng, W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
    [CrossRef]
  13. T. Esslinger, A. Hemmerich, T. W. Hänsch, “Imaging an atomic beam in two dimensions,” Opt. Commun. 93, 49–53 (1992).
    [CrossRef]

1997

C. Kurtsiefer, J. Mlynek, “A 2-dimensional detector with high spatial and temporal resolution for metastable rare gas atoms,” Appl. Phys. B 64, 85–90 (1997).
[CrossRef]

C. C. Bradley, S. A. Sackett, R. G. Hulet, “Bose–Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 78, 985–988 (1997).
[CrossRef]

1996

F. Ruschewitz, D. Battermann, J. L. Peng, W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

1995

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

1992

F. Shimizu, K. Shimizu, H. Takuma, “Double-slit interference with ultracold metastable neon atoms,” Phys. Rev. A 46, R17–20 (1992).
[CrossRef] [PubMed]

T. Esslinger, A. Hemmerich, T. W. Hänsch, “Imaging an atomic beam in two dimensions,” Opt. Commun. 93, 49–53 (1992).
[CrossRef]

1990

C. Monroe, W. Swann, H. Robinson, C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

1989

1985

M. de Labachelerie, P. Cérez, “An 850 nm semi-conductor laser tunable over a 300A range,” Opt. Commun. 55, 174–178 (1985).
[CrossRef]

Anderson, M. H.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Andrews, M. R.

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

Battermann, D.

F. Ruschewitz, D. Battermann, J. L. Peng, W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Bradley, C. C.

C. C. Bradley, S. A. Sackett, R. G. Hulet, “Bose–Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 78, 985–988 (1997).
[CrossRef]

Cérez, P.

M. de Labachelerie, P. Cérez, “An 850 nm semi-conductor laser tunable over a 300A range,” Opt. Commun. 55, 174–178 (1985).
[CrossRef]

Cornell, E. A.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Davis, K. B.

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

de Labachelerie, M.

M. de Labachelerie, P. Cérez, “An 850 nm semi-conductor laser tunable over a 300A range,” Opt. Commun. 55, 174–178 (1985).
[CrossRef]

Durfee, D. S.

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

Ensher, J. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Ertmer, W.

F. Ruschewitz, D. Battermann, J. L. Peng, W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Esslinger, T.

T. Esslinger, A. Hemmerich, T. W. Hänsch, “Imaging an atomic beam in two dimensions,” Opt. Commun. 93, 49–53 (1992).
[CrossRef]

Hänsch, T. W.

T. Esslinger, A. Hemmerich, T. W. Hänsch, “Imaging an atomic beam in two dimensions,” Opt. Commun. 93, 49–53 (1992).
[CrossRef]

Hatamian, S.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).

Hemmerich, A.

T. Esslinger, A. Hemmerich, T. W. Hänsch, “Imaging an atomic beam in two dimensions,” Opt. Commun. 93, 49–53 (1992).
[CrossRef]

Hulet, R. G.

C. C. Bradley, S. A. Sackett, R. G. Hulet, “Bose–Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 78, 985–988 (1997).
[CrossRef]

Ketterle, W.

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

Kurn, M. D.

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

Kurtsiefer, C.

C. Kurtsiefer, J. Mlynek, “A 2-dimensional detector with high spatial and temporal resolution for metastable rare gas atoms,” Appl. Phys. B 64, 85–90 (1997).
[CrossRef]

Matthews, M. R.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Metcalf, H.

Mewes, M. O.

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

Mlynek, J.

C. Kurtsiefer, J. Mlynek, “A 2-dimensional detector with high spatial and temporal resolution for metastable rare gas atoms,” Appl. Phys. B 64, 85–90 (1997).
[CrossRef]

Monroe, C.

C. Monroe, W. Swann, H. Robinson, C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Peng, J. L.

F. Ruschewitz, D. Battermann, J. L. Peng, W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Robinson, H.

C. Monroe, W. Swann, H. Robinson, C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Ruschewitz, F.

F. Ruschewitz, D. Battermann, J. L. Peng, W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

Sackett, S. A.

C. C. Bradley, S. A. Sackett, R. G. Hulet, “Bose–Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 78, 985–988 (1997).
[CrossRef]

Serre, I.

I. Serre, “Interférometrie atomique de type Young: réalisation et caractérisation de la source d’atomes de rubidium froids et de la méthode de détection intégrale,” PhD dissertation (Université de Paris XI, Paris, 1996).

Shang, S. Q.

Sheehly, B.

Shimizu, F.

F. Shimizu, K. Shimizu, H. Takuma, “Double-slit interference with ultracold metastable neon atoms,” Phys. Rev. A 46, R17–20 (1992).
[CrossRef] [PubMed]

Shimizu, K.

F. Shimizu, K. Shimizu, H. Takuma, “Double-slit interference with ultracold metastable neon atoms,” Phys. Rev. A 46, R17–20 (1992).
[CrossRef] [PubMed]

Swann, W.

C. Monroe, W. Swann, H. Robinson, C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Takuma, H.

F. Shimizu, K. Shimizu, H. Takuma, “Double-slit interference with ultracold metastable neon atoms,” Phys. Rev. A 46, R17–20 (1992).
[CrossRef] [PubMed]

van Druten, N. J.

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

Watts, R.

Wieman, C.

C. Monroe, W. Swann, H. Robinson, C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

Wieman, C. E.

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Appl. Phys. B

C. Kurtsiefer, J. Mlynek, “A 2-dimensional detector with high spatial and temporal resolution for metastable rare gas atoms,” Appl. Phys. B 64, 85–90 (1997).
[CrossRef]

Europhys. Lett.

F. Ruschewitz, D. Battermann, J. L. Peng, W. Ertmer, “Statistical investigations on single trapped neutral atoms,” Europhys. Lett. 34, 651–656 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

M. de Labachelerie, P. Cérez, “An 850 nm semi-conductor laser tunable over a 300A range,” Opt. Commun. 55, 174–178 (1985).
[CrossRef]

T. Esslinger, A. Hemmerich, T. W. Hänsch, “Imaging an atomic beam in two dimensions,” Opt. Commun. 93, 49–53 (1992).
[CrossRef]

Phys. Rev. A

F. Shimizu, K. Shimizu, H. Takuma, “Double-slit interference with ultracold metastable neon atoms,” Phys. Rev. A 46, R17–20 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

C. Monroe, W. Swann, H. Robinson, C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574 (1990).
[CrossRef] [PubMed]

K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Bose–Einstein condensation in a gas of sodium atoms,” Phys. Rev. Lett. 75, 3969–3973 (1995).
[CrossRef] [PubMed]

M. O. Mewes, M. R. Andrews, N. J. van Druten, M. D. Kurn, D. S. Durfee, W. Ketterle, “Bose–Einstein condensation in a tightly confining dc magnetic trap,” Phys. Rev. Lett. 77, 416–419 (1996);M. R. Andrews, M. O. Mewes, N. J. van Druten, D. S. Durfee, M. D. Kurn, W. Ketterle, “Direct, nondestructive observation of a Bose condensate,” Science 273, 84–87 (1996).
[CrossRef] [PubMed]

C. C. Bradley, S. A. Sackett, R. G. Hulet, “Bose–Einstein condensation of lithium: observation of limited condensate number,” Phys. Rev. Lett. 78, 985–988 (1997).
[CrossRef]

Science

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose–Einstein condensation in a dilute atomic vapor,” Science 269, 198–201 (1995).
[CrossRef] [PubMed]

Other

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987).

I. Serre, “Interférometrie atomique de type Young: réalisation et caractérisation de la source d’atomes de rubidium froids et de la méthode de détection intégrale,” PhD dissertation (Université de Paris XI, Paris, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental scheme.

Fig. 2
Fig. 2

Timing scheme for detection of released atoms.

Fig. 3
Fig. 3

1.2-mm pinhole located 3 cm below the trap: (a) picture, (b) time-of-flight signal, (c) z-integrated signal and theoretical profile (solid curve).

Fig. 4
Fig. 4

200-μm pinhole located 1 cm below the trap: (a) picture, (b) z-integrated signal and theoretical profile (solid curve).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

η = erf a 2 ( σ 0 2 + σ ν 2 τ 2 ) 1 / 2 2 ,
σ ν mm / s = 9.85 T   μ K 1 / 2 .
P 0 = N 0 2 π σ 0 2 exp - x 0 2 + z 0 2 2 σ 0 2 1 2 π σ ν 2 exp - ν x 0 2 + ν z 0 2 2 σ ν 2 .
n x ,   z ,   T = N 0 2 π σ 0 2 1 2 π σ v 2 t 2 C exp - x 0 2 + z 0 2 2 σ 0 2 × exp - ( x - x 0 ) 2 + ( z - z 0 - gt 2 / 2 ) 2 2 σ ν 2 t 2 d x 0 d y 0 ,
h - z 0 = g τ 2 / 2 + ( z - z 0 - gT 2 / 2 ) τ / T ,
- a x 0 + x - x 0 τ / T a .
s x ,   T = N 0 2 π σ 0 σ ν t C exp - x 0 2 2 σ 0 2 exp - x - x 0 2 2 σ ν 2 t 2 d x 0 .
s ( x ,   t ) = N 0 2 π σ 0 σ ν T ( 1 - τ / t ) × exp - x 2 2 ( σ 0 2 + σ ν 2 t 2 ) - a a exp - ( u - δ ) 2 2 σ 0 2 d u ,
σ 0 = ( 1 - τ / t ) σ 0 σ ν t ( σ 0 2 + σ ν 2 t 2 ) 1 / 2 ,   δ = σ 0 2 + σ ν 2 τ t σ 0 2 + σ ν 2 t 2   x .
s ( x ,   t ) = N 0 2 π ( σ 0 2 + σ ν 2 t 2 ) 1 / 2 exp - x 2 2 ( σ 0 2 + σ ν 2 T 2 ) × 1 2 erf ( a - δ 2   σ 0 ) - erf ( - a - δ 2 σ 0 ) .
η 1 D = erf a 2 ( σ 0 2 + σ ν 2 τ 2 ) 1 / 2 .

Metrics