Abstract

Investigations of a double-pass scanning microscope with a self-pumped phase-conjugate mirror are presented. The microscope achieves lateral- and axial-resolution enhancements compared with the conventional confocal transmission microscope and has the advantages of self-alignment and aberration compensation owing to the properties of a phase-conjugate mirror. Using a self-pumped phase-conjugate mirror makes it possible to achieve a high scan rate, which is essential to observing objects by a confocal microscope.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. J. R. Sheppard, “15 years of scanning optical microscopy at Oxford,” in Selected Papers on Confocal Microscopy, Vol. MS131 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1996), pp. 18–20.
  2. R. G. King, P. M. Delaney, “Confocal microscopy,” Mater. Forum 18, 21–29 (1994).
  3. C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  4. T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).
  5. C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
    [CrossRef]
  6. O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, 852–853 (1996).
    [CrossRef]
  7. K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
    [CrossRef]
  8. K. M. Johnson, C. Mao, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
    [CrossRef] [PubMed]
  9. J. Feinberg, “Self-pumped continuous-wave phase conjugator using internal reflection,” Opt. Lett. 7, 486–488 (1982).
    [CrossRef] [PubMed]
  10. H. Rehn, R. Kowarschik, “Experimental investigations of the external self-pumped phase conjugate mirror,” Opt. Commun. 109, 155–162 (1994).
    [CrossRef]

1996 (1)

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, 852–853 (1996).
[CrossRef]

1994 (2)

R. G. King, P. M. Delaney, “Confocal microscopy,” Mater. Forum 18, 21–29 (1994).

H. Rehn, R. Kowarschik, “Experimental investigations of the external self-pumped phase conjugate mirror,” Opt. Commun. 109, 155–162 (1994).
[CrossRef]

1990 (1)

1989 (1)

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

1982 (1)

1980 (1)

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

Cathey, W. T.

K. M. Johnson, C. Mao, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
[CrossRef] [PubMed]

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

Delaney, P. M.

R. G. King, P. M. Delaney, “Confocal microscopy,” Mater. Forum 18, 21–29 (1994).

Feinberg, J.

Fujita, K.

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, 852–853 (1996).
[CrossRef]

Johnson, K. M.

K. M. Johnson, C. Mao, W. T. Cathey, “Superresolving phase conjugate scanning microscope,” Appl. Opt. 29, 3753–3765 (1990).
[CrossRef] [PubMed]

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

Kawata, S.

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, 852–853 (1996).
[CrossRef]

Kawata, Y.

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, 852–853 (1996).
[CrossRef]

King, R. G.

R. G. King, P. M. Delaney, “Confocal microscopy,” Mater. Forum 18, 21–29 (1994).

Kowarschik, R.

H. Rehn, R. Kowarschik, “Experimental investigations of the external self-pumped phase conjugate mirror,” Opt. Commun. 109, 155–162 (1994).
[CrossRef]

Mao, C.

Mao, C. C.

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

Nakamura, O.

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, 852–853 (1996).
[CrossRef]

Rehn, H.

H. Rehn, R. Kowarschik, “Experimental investigations of the external self-pumped phase conjugate mirror,” Opt. Commun. 109, 155–162 (1994).
[CrossRef]

Sheppard, C. J. R.

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

C. J. R. Sheppard, “15 years of scanning optical microscopy at Oxford,” in Selected Papers on Confocal Microscopy, Vol. MS131 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1996), pp. 18–20.

C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Wilson, T.

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

K. M. Johnson, W. T. Cathey, C. C. Mao, “Image formation in a superresolution phase conjugate scanning microscope,” Appl. Phys. Lett. 55, 1707–1709 (1989).
[CrossRef]

Jpn. J. Appl. Phys. (1)

O. Nakamura, K. Fujita, Y. Kawata, S. Kawata, “Double-pass confocal absorption microscope with a phase conjugation mirror,” Jpn. J. Appl. Phys. 35, 852–853 (1996).
[CrossRef]

Mater. Forum (1)

R. G. King, P. M. Delaney, “Confocal microscopy,” Mater. Forum 18, 21–29 (1994).

Opt. Acta (1)

C. J. R. Sheppard, T. Wilson, “Multiple traversing of the object in the scanning microscope,” Opt. Acta 27, 611–624 (1980).
[CrossRef]

Opt. Commun. (1)

H. Rehn, R. Kowarschik, “Experimental investigations of the external self-pumped phase conjugate mirror,” Opt. Commun. 109, 155–162 (1994).
[CrossRef]

Opt. Lett. (1)

Other (3)

C. J. R. Sheppard, “15 years of scanning optical microscopy at Oxford,” in Selected Papers on Confocal Microscopy, Vol. MS131 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1996), pp. 18–20.

C. J. R. Sheppard, T. Wilson, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

T. Wilson, ed., Confocal Microscopy (Academic, London, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Principal setup of the DPSM.

Fig. 2
Fig. 2

Principal setup of a DPSM with a SPPCM.

Fig. 3
Fig. 3

Unfolded DPSM with a SPPCM when perfect phase conjugation is assumed. PH, pinhole; MO, microscope objective.

Fig. 4
Fig. 4

Optical transfer function of the DPSM with a SPPCM.

Fig. 5
Fig. 5

Experimental setup of the self-pumped PC mirror based on two TIR’s (Cat conjugator).

Fig. 6
Fig. 6

Experimental setup for investigating the time-response behavior of the Cat conjugator.

Fig. 7
Fig. 7

Response of the Cat conjugator to signal interruption.

Fig. 8
Fig. 8

Response of the Cat conjugator to signal-intensity changes that occur when the λ/2 plate is turned by hand.

Fig. 9
Fig. 9

Response of the Cat conjugator to signal-intensity changes that occur when the λ/2 plate is turned by an engine.

Fig. 10
Fig. 10

Experimental setup for investigating aberration compensation by the Cat conjugator. BS, beam splitter.

Fig. 11
Fig. 11

PC images produced by the Cat conjugator compared with images produced by an ordinary planar mirror at normal incidence.

Fig. 12
Fig. 12

Experimental setup of the three configurations under comparison—SPSM, DPSM, and DPSM with a SPPCM. PH, pinhole; BS, beam splitter; MO, microscope objective.

Fig. 13
Fig. 13

Images of a straight-edged object obtained from the experiments.

Tables (1)

Tables Icon

Table 1 Gradients of the Signal of the Straight-Edged Object

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

U SPPCM x s =           δ x 0 h 1 x 0 / M + x 1 × t x s - x 1 h 2 x 1 + x 2 / M × δ x 2 h 3 x 2 / M + x 3 × t x s - x 3 h 4 x 3 + x 4 / M × δ x 4 d x 0 d x 1 d x 2 d x 3 d x 4 ,
U SPPCM x s =     h 1 x 1 t x s - x 1 h 2 x 1 h 3 x 3 × t x s - x 3 h 4 x 3 d x 1 d x 2 .
U x s =     C m ,   m T m T m × exp j 2 π m + m x s d m d m ,
C SPPCM m ˆ ,   m ˆ = P m ˆ     P m ˆ P m ˆ     P m ˆ ,

Metrics