Abstract

It has been shown previously that the spatial coherence of a source can be modulated and demodulated; hence it can be used as the basis for a new dimension of multiplexing in high-speed optical communication links. We address the sensitivity of such a system to misalignments of the receiver with respect to the beam and examine how changing transverse modes affect the spatial coherence in the lateral direction. Specifically, we show that such a system is surprisingly robust for both lateral offsets, in which the receiver is not properly aligned on the beam center, and rotational offsets, in which the receiver is tilted with respect to the plane of the spatial coherence modulation. The presence of higher-order transverse modes or changes in the transverse-mode structure are also shown to have little effect on the system operation.

© 1998 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
    [CrossRef]
  2. K. W. Chu, F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng. 30, 337–344 (1991).
    [CrossRef]
  3. J.-P. Goedgebuer, A. Hamel, “Coherence multiplexing using a parallel array of electrooptic modulators and multimode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 2224–2236 (1987).
    [CrossRef]
  4. J.-P. Goedgebuer, A. Hamel, H. Porte, N. Butterlin, “Analysis of optical crosstalk in coherence multiplexed systems employing a short coherence laser diode with arbitrary power spectrum,” IEEE J. Quantum Electron. 26, 1217–1226 (1990).
    [CrossRef]
  5. B. L. Anderson, L. J. Pelz, “Spatial coherence modulation for free-space communication,” Appl. Opt. 34, 7443–7450 (1995).
    [CrossRef] [PubMed]
  6. P. Spano, “Connection between spatial coherence and modal structure in optical fibers and semiconductor lasers,” Opt. Commun. 33, 265–270 (1980).
    [CrossRef]
  7. L. J. Pelz, B. L. Anderson, “Practical use of the spatial coherence function for determining laser transverse mode structure,” Opt. Eng. 34, 3323–3328 (1995).
    [CrossRef]
  8. M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 10, pp. 505–507.
  9. B. L. Anderson, P. L. Fuhr, “Twin-fiber interferometric method for measuring spatial coherence,” Opt. Eng. 32, 926–932 (1993).
    [CrossRef]

1995 (2)

L. J. Pelz, B. L. Anderson, “Practical use of the spatial coherence function for determining laser transverse mode structure,” Opt. Eng. 34, 3323–3328 (1995).
[CrossRef]

B. L. Anderson, L. J. Pelz, “Spatial coherence modulation for free-space communication,” Appl. Opt. 34, 7443–7450 (1995).
[CrossRef] [PubMed]

1993 (1)

B. L. Anderson, P. L. Fuhr, “Twin-fiber interferometric method for measuring spatial coherence,” Opt. Eng. 32, 926–932 (1993).
[CrossRef]

1991 (1)

K. W. Chu, F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng. 30, 337–344 (1991).
[CrossRef]

1990 (1)

J.-P. Goedgebuer, A. Hamel, H. Porte, N. Butterlin, “Analysis of optical crosstalk in coherence multiplexed systems employing a short coherence laser diode with arbitrary power spectrum,” IEEE J. Quantum Electron. 26, 1217–1226 (1990).
[CrossRef]

1987 (1)

J.-P. Goedgebuer, A. Hamel, “Coherence multiplexing using a parallel array of electrooptic modulators and multimode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 2224–2236 (1987).
[CrossRef]

1985 (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

1980 (1)

P. Spano, “Connection between spatial coherence and modal structure in optical fibers and semiconductor lasers,” Opt. Commun. 33, 265–270 (1980).
[CrossRef]

Anderson, B. L.

B. L. Anderson, L. J. Pelz, “Spatial coherence modulation for free-space communication,” Appl. Opt. 34, 7443–7450 (1995).
[CrossRef] [PubMed]

L. J. Pelz, B. L. Anderson, “Practical use of the spatial coherence function for determining laser transverse mode structure,” Opt. Eng. 34, 3323–3328 (1995).
[CrossRef]

B. L. Anderson, P. L. Fuhr, “Twin-fiber interferometric method for measuring spatial coherence,” Opt. Eng. 32, 926–932 (1993).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 10, pp. 505–507.

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Butterlin, N.

J.-P. Goedgebuer, A. Hamel, H. Porte, N. Butterlin, “Analysis of optical crosstalk in coherence multiplexed systems employing a short coherence laser diode with arbitrary power spectrum,” IEEE J. Quantum Electron. 26, 1217–1226 (1990).
[CrossRef]

Chu, K. W.

K. W. Chu, F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng. 30, 337–344 (1991).
[CrossRef]

Dickey, F. M.

K. W. Chu, F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng. 30, 337–344 (1991).
[CrossRef]

Fuhr, P. L.

B. L. Anderson, P. L. Fuhr, “Twin-fiber interferometric method for measuring spatial coherence,” Opt. Eng. 32, 926–932 (1993).
[CrossRef]

Goedgebuer, J.-P.

J.-P. Goedgebuer, A. Hamel, H. Porte, N. Butterlin, “Analysis of optical crosstalk in coherence multiplexed systems employing a short coherence laser diode with arbitrary power spectrum,” IEEE J. Quantum Electron. 26, 1217–1226 (1990).
[CrossRef]

J.-P. Goedgebuer, A. Hamel, “Coherence multiplexing using a parallel array of electrooptic modulators and multimode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 2224–2236 (1987).
[CrossRef]

Hamel, A.

J.-P. Goedgebuer, A. Hamel, H. Porte, N. Butterlin, “Analysis of optical crosstalk in coherence multiplexed systems employing a short coherence laser diode with arbitrary power spectrum,” IEEE J. Quantum Electron. 26, 1217–1226 (1990).
[CrossRef]

J.-P. Goedgebuer, A. Hamel, “Coherence multiplexing using a parallel array of electrooptic modulators and multimode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 2224–2236 (1987).
[CrossRef]

Kim, B. Y.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Pelz, L. J.

B. L. Anderson, L. J. Pelz, “Spatial coherence modulation for free-space communication,” Appl. Opt. 34, 7443–7450 (1995).
[CrossRef] [PubMed]

L. J. Pelz, B. L. Anderson, “Practical use of the spatial coherence function for determining laser transverse mode structure,” Opt. Eng. 34, 3323–3328 (1995).
[CrossRef]

Porte, H.

J.-P. Goedgebuer, A. Hamel, H. Porte, N. Butterlin, “Analysis of optical crosstalk in coherence multiplexed systems employing a short coherence laser diode with arbitrary power spectrum,” IEEE J. Quantum Electron. 26, 1217–1226 (1990).
[CrossRef]

Shaw, H. J.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Spano, P.

P. Spano, “Connection between spatial coherence and modal structure in optical fibers and semiconductor lasers,” Opt. Commun. 33, 265–270 (1980).
[CrossRef]

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 10, pp. 505–507.

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (2)

J.-P. Goedgebuer, A. Hamel, “Coherence multiplexing using a parallel array of electrooptic modulators and multimode semiconductor lasers,” IEEE J. Quantum Electron. QE-23, 2224–2236 (1987).
[CrossRef]

J.-P. Goedgebuer, A. Hamel, H. Porte, N. Butterlin, “Analysis of optical crosstalk in coherence multiplexed systems employing a short coherence laser diode with arbitrary power spectrum,” IEEE J. Quantum Electron. 26, 1217–1226 (1990).
[CrossRef]

J. Lightwave Technol. (1)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. LT-3, 1062–1071 (1985).
[CrossRef]

Opt. Commun. (1)

P. Spano, “Connection between spatial coherence and modal structure in optical fibers and semiconductor lasers,” Opt. Commun. 33, 265–270 (1980).
[CrossRef]

Opt. Eng. (3)

L. J. Pelz, B. L. Anderson, “Practical use of the spatial coherence function for determining laser transverse mode structure,” Opt. Eng. 34, 3323–3328 (1995).
[CrossRef]

K. W. Chu, F. M. Dickey, “Optical coherence multiplexing for interprocessor communications,” Opt. Eng. 30, 337–344 (1991).
[CrossRef]

B. L. Anderson, P. L. Fuhr, “Twin-fiber interferometric method for measuring spatial coherence,” Opt. Eng. 32, 926–932 (1993).
[CrossRef]

Other (1)

M. Born, E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980), Chap. 10, pp. 505–507.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics