Abstract

Oblique incidence reflectometry is a simple and accurate method for measuring the absorption and the reduced-scattering coefficients of turbid media. We used this technique to deduce absorption and reduced-scattering spectra from wavelength-resolved measurements of the relative diffuse reflectance profile of white light as a function of source–detector distance. In this study, we measured the absorption and the reduced-scattering coefficients of chicken breast tissue in the visible range (400–800 nm) with the oblique incidence probe oriented at 0° and 90° relative to the muscle fibers. We found that the deduced optical properties varied with the probe orientation. Measurements on homogenized chicken breast tissue yielded an absorption spectrum comparable with the average of the absorption spectra for 0° and 90° probe orientations measured on the unhomogenized tissue. The reduced-scattering spectrum for homogeneous tissue was greater than that acquired for unhomogenized tissue taken at either probe orientation. This experiment demonstrated the application of oblique-incidence, fiber-optic reflectometry to measurements on biological tissues and the effect of tissue structural anisotropy on optical properties.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
    [CrossRef] [PubMed]
  2. S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
    [CrossRef] [PubMed]
  3. S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of absorption and scattering spectra with oblique incidence reflectometry,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 44–49.
  4. D. Benaron, G. Mueller, B. Chance, “Introduction: a medical perspective at the threshold of clinical optical tomography,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of 1993 SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 3–9.
  5. R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
    [CrossRef] [PubMed]
  6. R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
    [CrossRef] [PubMed]
  7. J. W. Pickering, S. A. Prahl, N. Vanwieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  8. S. L. Jacques, A. Gutsche, J. A. Schwartz, L.-H. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.
  9. T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
    [CrossRef] [PubMed]
  10. M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
    [CrossRef] [PubMed]
  11. S.-P. Lin, “Oblique-incidence fiber-optic reflectometry for measuring absorption and scattering in turbid media,” M. S. thesis (Rice University, Houston, Tex., 1996).
  12. T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
    [CrossRef] [PubMed]
  13. L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
    [CrossRef]
  14. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Veterlin, Numerical Recipes in C, 2nd ed. (Cambridge U., Cambridge, UK, 1992), Section 15.5.
  15. E. Antonini, M. Brunori, Hemoglobin and Myoglobin and their Reactions with Ligands (Elsevier, New York, 1971), pp. 16–20.
  16. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th (corrected) ed. (Pergamon, New York, 1986), Section 13.5.
  17. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  18. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Programs Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from http://biomed.tamu.edu/~lw .
    [CrossRef]
  19. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Programs Biomed. 54, 141–150 (1997).
    [CrossRef]
  20. H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
    [CrossRef]
  21. P. T. Tran, S. Inoue, E. D. Salmon, R. Oldenbourg, “Muscle fine structure and microtubule birefringence measured with a new pol-scope,” Biol. Bull. 187, 244–245 (1994).
    [PubMed]
  22. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  23. E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
    [CrossRef] [PubMed]

1997

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

M. G. Nichols, E. L. Hull, T. H. Foster, “Design and testing of a white-light, steady-state diffuse reflectance spectrometer for determination of optical properties of highly scattering systems,” Appl. Opt. 36, 93–104 (1997).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Programs Biomed. 54, 141–150 (1997).
[CrossRef]

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
[CrossRef]

1996

E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
[CrossRef] [PubMed]

1995

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Programs Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from http://biomed.tamu.edu/~lw .
[CrossRef]

L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

1994

P. T. Tran, S. Inoue, E. D. Salmon, R. Oldenbourg, “Muscle fine structure and microtubule birefringence measured with a new pol-scope,” Biol. Bull. 187, 244–245 (1994).
[PubMed]

1993

1992

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

1991

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Antonini, E.

E. Antonini, M. Brunori, Hemoglobin and Myoglobin and their Reactions with Ligands (Elsevier, New York, 1971), pp. 16–20.

Beek, J. F.

Benaron, D.

D. Benaron, G. Mueller, B. Chance, “Introduction: a medical perspective at the threshold of clinical optical tomography,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of 1993 SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 3–9.

Bohren, C. F.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Born, M.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th (corrected) ed. (Pergamon, New York, 1986), Section 13.5.

Brambilla, M.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Brunori, M.

E. Antonini, M. Brunori, Hemoglobin and Myoglobin and their Reactions with Ligands (Elsevier, New York, 1971), pp. 16–20.

Casinelli, N.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Chan, E.

E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
[CrossRef] [PubMed]

Chance, B.

D. Benaron, G. Mueller, B. Chance, “Introduction: a medical perspective at the threshold of clinical optical tomography,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of 1993 SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 3–9.

Clemente, C.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Farrell, T. J.

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Veterlin, Numerical Recipes in C, 2nd ed. (Cambridge U., Cambridge, UK, 1992), Section 15.5.

Foster, T. H.

Gutsche, A.

S. L. Jacques, A. Gutsche, J. A. Schwartz, L.-H. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Huffman, D. R.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Hull, E. L.

Inoue, S.

P. T. Tran, S. Inoue, E. D. Salmon, R. Oldenbourg, “Muscle fine structure and microtubule birefringence measured with a new pol-scope,” Biol. Bull. 187, 244–245 (1994).
[PubMed]

Jacques, S. L.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Programs Biomed. 54, 141–150 (1997).
[CrossRef]

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Programs Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from http://biomed.tamu.edu/~lw .
[CrossRef]

L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
[CrossRef]

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of absorption and scattering spectra with oblique incidence reflectometry,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 44–49.

S. L. Jacques, A. Gutsche, J. A. Schwartz, L.-H. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Jester, K. A.

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
[CrossRef]

Kao, M. H.

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
[CrossRef]

Lin, S.-P.

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of absorption and scattering spectra with oblique incidence reflectometry,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 44–49.

S.-P. Lin, “Oblique-incidence fiber-optic reflectometry for measuring absorption and scattering in turbid media,” M. S. thesis (Rice University, Houston, Tex., 1996).

Lubensky, T. C.

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
[CrossRef]

Maniezzo, M.

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Marchesini, R.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Mascheroni, L.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

Menovsky, T.

E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
[CrossRef] [PubMed]

Mueller, G.

D. Benaron, G. Mueller, B. Chance, “Introduction: a medical perspective at the threshold of clinical optical tomography,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of 1993 SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 3–9.

Nichols, M. G.

Oldenbourg, R.

P. T. Tran, S. Inoue, E. D. Salmon, R. Oldenbourg, “Muscle fine structure and microtubule birefringence measured with a new pol-scope,” Biol. Bull. 187, 244–245 (1994).
[PubMed]

Patterson, M. S.

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Pickering, J. W.

Pignoli, E.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

Prahl, S. A.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Veterlin, Numerical Recipes in C, 2nd ed. (Cambridge U., Cambridge, UK, 1992), Section 15.5.

Salmon, E. D.

P. T. Tran, S. Inoue, E. D. Salmon, R. Oldenbourg, “Muscle fine structure and microtubule birefringence measured with a new pol-scope,” Biol. Bull. 187, 244–245 (1994).
[PubMed]

Schwartz, J. A.

S. L. Jacques, A. Gutsche, J. A. Schwartz, L.-H. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Sichirollo, A. E.

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Stark, H.

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
[CrossRef]

Sterenborg, H. J. C. M.

Testori, A.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Veterlin, Numerical Recipes in C, 2nd ed. (Cambridge U., Cambridge, UK, 1992), Section 15.5.

Tittel, F. K.

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of absorption and scattering spectra with oblique incidence reflectometry,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 44–49.

S. L. Jacques, A. Gutsche, J. A. Schwartz, L.-H. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

Tran, P. T.

P. T. Tran, S. Inoue, E. D. Salmon, R. Oldenbourg, “Muscle fine structure and microtubule birefringence measured with a new pol-scope,” Biol. Bull. 187, 244–245 (1994).
[PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

van Gemert, M. J. C.

Vanwieringen, N.

Venturoli, D. R.

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

Veterlin, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Veterlin, Numerical Recipes in C, 2nd ed. (Cambridge U., Cambridge, UK, 1992), Section 15.5.

Wang, L.-H.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Programs Biomed. 54, 141–150 (1997).
[CrossRef]

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, “Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium,” Appl. Opt. 34, 2362–2366 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Programs Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from http://biomed.tamu.edu/~lw .
[CrossRef]

L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
[CrossRef]

S. L. Jacques, A. Gutsche, J. A. Schwartz, L.-H. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of absorption and scattering spectra with oblique incidence reflectometry,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 44–49.

Welch, A. J.

E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
[CrossRef] [PubMed]

Wilson, B. C.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Wolf, E.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th (corrected) ed. (Pergamon, New York, 1986), Section 13.5.

Yodh, A. G.

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
[CrossRef]

Zheng, L.-Q.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Programs Biomed. 54, 141–150 (1997).
[CrossRef]

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Programs Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from http://biomed.tamu.edu/~lw .
[CrossRef]

Appl. Opt.

E. Chan, T. Menovsky, A. J. Welch, “Effects of cryogenic grinding on soft-tissue optical properties,” Appl. Opt. 35, 4526–4532 (1996).
[CrossRef] [PubMed]

Appl. Opt.

Biol. Bull.

P. T. Tran, S. Inoue, E. D. Salmon, R. Oldenbourg, “Muscle fine structure and microtubule birefringence measured with a new pol-scope,” Biol. Bull. 187, 244–245 (1994).
[PubMed]

Comput. Meth. Programs Biomed.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “CONV—Convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Meth. Programs Biomed. 54, 141–150 (1997).
[CrossRef]

Comput. Meth. Programs Biomed.

L.-H. Wang, S. L. Jacques, L.-Q. Zheng, “MCML—Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Meth. Programs Biomed. 47, 131–146 (1995). The MCML/CONV software package may be downloaded from http://biomed.tamu.edu/~lw .
[CrossRef]

J. Opt. Soc. Am. A.

H. Stark, M. H. Kao, K. A. Jester, T. C. Lubensky, A. G. Yodh, “Light diffusion and diffusing-wave spectroscopy in nematic liquid crystals,” J. Opt. Soc. Am. A. 14, 156–178 (1997).
[CrossRef]

Med. Phys.

T. J. Farrell, M. S. Patterson, B. C. Wilson, “A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the non-invasive determination of tissue optical properties in vivo,” Med. Phys. 19, 879–888 (1992).
[CrossRef] [PubMed]

Photochem. Photobiol.

R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E. Sichirollo, A. Testori, D. R. Venturoli, N. Casinelli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—I. Reflectance measurements,” Photochem. Photobiol. 53, 77–84 (1991).
[CrossRef] [PubMed]

R. Marchesini, N. Casinelli, M. Brambilla, C. Clemente, L. Mascheroni, E. Pignoli, A. Testori, D. R. Venturoli, “In vivo spectrophotometric evaluation of neoplastic and non-neoplastic skin pigmented lesions—II. Discriminant analysis between nevus and melanoma,” Photochem. Photobiol. 55, 515–522 (1992).
[CrossRef] [PubMed]

Phys. Med. Biol.

T. J. Farrell, B. C. Wilson, M. S. Patterson, “The use of a neural network to determine tissue optical properties from spatially resolved diffuse reflectance measurements,” Phys. Med. Biol. 37, 2281–2286 (1992).
[CrossRef] [PubMed]

Other

S.-P. Lin, “Oblique-incidence fiber-optic reflectometry for measuring absorption and scattering in turbid media,” M. S. thesis (Rice University, Houston, Tex., 1996).

L.-H. Wang, S. L. Jacques, “Analysis of diffusion theory and similarity relations,” in Photon Migration and Imaging in Random Media and Tissues, B. Chance, R. R. Alfano, eds., Proc. SPIE1888, 107–116 (1993).
[CrossRef]

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Veterlin, Numerical Recipes in C, 2nd ed. (Cambridge U., Cambridge, UK, 1992), Section 15.5.

E. Antonini, M. Brunori, Hemoglobin and Myoglobin and their Reactions with Ligands (Elsevier, New York, 1971), pp. 16–20.

M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th (corrected) ed. (Pergamon, New York, 1986), Section 13.5.

C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

S. L. Jacques, A. Gutsche, J. A. Schwartz, L.-H. Wang, F. K. Tittel, “Video reflectometry to extract optical properties of tissue in vivo,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 211–226.

S.-P. Lin, L.-H. Wang, S. L. Jacques, F. K. Tittel, “Measurement of absorption and scattering spectra with oblique incidence reflectometry,” in Biomedical Optical Spectroscopy and Diagnostics, E. Sevick-Muraca, D. Benaron, eds., Vol. 3 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 44–49.

D. Benaron, G. Mueller, B. Chance, “Introduction: a medical perspective at the threshold of clinical optical tomography,” in Medical Optical Tomography: Functional Imaging and Monitoring, G. Mueller, ed., Vol. 11 of 1993 SPIE Institutes (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993), pp. 3–9.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of experimental apparatus. White light was coupled to the oblique-incidence optical fiber probe. A source fiber delivered light to the chicken breast tissue at an angle of 45°, and the diffuse reflectance was collected by nine collection fibers. All fibers were encased to form a hand-held probe. The core diameter of the fibers was 600 μm with an index of refraction of 1.46. The index of refraction of chicken breast tissue was 1.37. The angle of refraction was computed to be 48.9°. The collected diffuse reflectance was analyzed and its spectrum recorded with the OMA.

Fig. 2
Fig. 2

Chicken breast tissue setup. (a) The container, 10 cm deep and 10 cm in diameter, is shown. The probe makes physical contact with the chicken tissue. Immersion oil is used as a coupling medium. (b) Probe orientation is shown with respect to the muscle fiber orientation: 0° indicates parallel and 90° perpendicular. An exposed x-ray film is placed on top of the chicken tissue to approximate a matched boundary condition for diffusion theory.

Fig. 3
Fig. 3

Schematic representation of obliquely incident light upon a tissue. Note the shift in the center of diffuse reflectance, Δx. The positions of the two point sources in the diffusion-theory model of oblique-incidence reflectometry are shown.

Fig. 4
Fig. 4

(a) Spectra of the spatially distributed diffuse reflectance between 400 and 800 nm of chicken breast tissue with the fiber probe oriented at 0° with respect to the muscle fiber orientation. Each line on the figure represents the spectrum collected by one of the nine collection fibers. There were no detection fibers between -0.92 and +0.19 cm. (b) Example of one spectral slice at 632.4 nm through our chicken tissue data at 0° probe orientation relative to the muscle fiber orientation. Note the obliquely incident light and the shift in the center of diffuse reflectance, Δx.

Fig. 5
Fig. 5

(a) Absorption spectra of chicken breast tissue with the probe aligned at 0° (parallel) and 90° (perpendicular) with respect to the muscle fiber orientation. The absorption spectrum of deoxyhemoglobin is also plotted. The values for deoxyhemoglobin are relative; its use in this graph is to show its similarities with our measured absorption spectra. (b) The reduced-scattering spectra with the probe aligned at 0° and 90° with respect to the muscle fiber orientation. The coefficient decreased smoothly with increase in wavelength beyond a peak at approximately 450 nm.

Fig. 6
Fig. 6

(a) Absorption coefficient spectrum for homogenized chicken tissue was approximately equal to the average of the absorption coefficients for 0° and 90° probe orientation. (b) The reduced-scattering coefficient spectrum for homogenized chicken breast tissue was greater than those for either 0° or 90° probe orientation.

Fig. 7
Fig. 7

(a) Absorption coefficient at 0° probe orientation with respect to muscle fiber orientation for two different samples of chicken breast tissue. (b) Reduced-scattering coefficient at 0° probe orientation with respect to muscle fiber orientation for the two samples. There was variability in absolute values between samples; however, the patterns persisted.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

3 D = 1 0.35 μ a + μ s ,
Δ x = sin α i n 0.35 μ a + μ s = sin α t 0.35 μ a + μ s ,
R x = Δ z 1 + μ eff ρ 1 exp - μ eff ρ 1 4 π ρ 1 3 + Δ z + 2 z b 1 + μ eff ρ 2 exp - μ eff ρ 2 4 π ρ 2 3 ,
z b = 2 AD ,
Δ z = cos α t 0.35 μ a + μ s = Δ x   tan - 1 α t ,
μ eff = μ a / D 1 / 2 .
D = Δ x 3   sin α t .
μ a = μ eff 2 Δ x 3   sin α t ,
μ s = sin α t Δ x - 0.35 μ a .

Metrics