Abstract

A method for fluorescence polarization difference imaging is demonstrated for enhancing the image quality of a luminous object embedded in a random medium. The polarization preservation of light propagating in the scattering medium leads to partially polarized light emission by a contrast-agent dye located inside the object. Subtraction of the images of the luminous object detected at two orthogonal polarization directions improves the image resolution compared with a conventional optical imaging approach.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Anderson, S. Montan, S. Svanberg, “Multicolor imaging system for tissue fluorescence diagnostics; use for tumor and atherosclerotic plaque demarcation,” IEEE J. Quantum Electronics QE-23, 1798–1805 (1987).
  2. K. M. Yoo, Z.-W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging object hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
    [CrossRef] [PubMed]
  3. K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1996), pp. 332–335.
  4. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance, A. G. Yodh, “Fluorescence lifetime imaging in turbid media,” Opt. Lett. 21, 158–160 (1996).
    [CrossRef] [PubMed]
  5. K. M. Yoo, F. Liu, R. R. Alfano, “Imaging object hidden in highly scattering media using femtosecond second-harmonic generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
    [CrossRef] [PubMed]
  6. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, J. Valdmanis, “Two-dimensional imaging through diffusion media using 150-fs gated electronic holography techniques,” Opt. Lett. 16, 487–489 (1991).
    [CrossRef] [PubMed]
  7. L. Wang, P. P. Ho, C. H. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
    [CrossRef] [PubMed]
  8. J. M. Schmitt, A. H. Gandjbakhche, R. F. Bonner, “Use of polarized light to discriminate short-path photons in a multiply scattering medium,” Appl. Opt. 31, 6535–6546 (1992).
    [CrossRef] [PubMed]
  9. S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
    [CrossRef] [PubMed]
  10. S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
    [CrossRef]
  11. G. R. Fleming, J. M. Morris, G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
    [CrossRef]
  12. G. Porter, P. J. Sadkowski, C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
    [CrossRef]
  13. W. B. Wang, S. G. Demos, J. Ali, R. R. Alfano, “Imaging fluorescent objects embedded inside animal tissues using polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
    [CrossRef]

1997

W. B. Wang, S. G. Demos, J. Ali, R. R. Alfano, “Imaging fluorescent objects embedded inside animal tissues using polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

1996

1992

1991

1987

P. S. Anderson, S. Montan, S. Svanberg, “Multicolor imaging system for tissue fluorescence diagnostics; use for tumor and atherosclerotic plaque demarcation,” IEEE J. Quantum Electronics QE-23, 1798–1805 (1987).

1977

G. Porter, P. J. Sadkowski, C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

1976

G. R. Fleming, J. M. Morris, G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Ahmed, S. A.

Alfano, R. R.

W. B. Wang, S. G. Demos, J. Ali, R. R. Alfano, “Imaging fluorescent objects embedded inside animal tissues using polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

K. M. Yoo, Z.-W. Zang, S. A. Ahmed, R. R. Alfano, “Imaging object hidden in scattering media using a fluorescence-absorption technique,” Opt. Lett. 16, 1252–1254 (1991).
[CrossRef] [PubMed]

K. M. Yoo, F. Liu, R. R. Alfano, “Imaging object hidden in highly scattering media using femtosecond second-harmonic generation cross-correlation time gating,” Opt. Lett. 16, 1019–1021 (1991).
[CrossRef] [PubMed]

L. Wang, P. P. Ho, C. H. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Ali, J.

W. B. Wang, S. G. Demos, J. Ali, R. R. Alfano, “Imaging fluorescent objects embedded inside animal tissues using polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

Anderson, P. S.

P. S. Anderson, S. Montan, S. Svanberg, “Multicolor imaging system for tissue fluorescence diagnostics; use for tumor and atherosclerotic plaque demarcation,” IEEE J. Quantum Electronics QE-23, 1798–1805 (1987).

Boas, D. A.

Bonner, R. F.

Chance, B.

Chen, H.

Chen, Y.

Dainty, J. C.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1996), pp. 332–335.

Demos, S. G.

W. B. Wang, S. G. Demos, J. Ali, R. R. Alfano, “Imaging fluorescent objects embedded inside animal tissues using polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

S. G. Demos, R. R. Alfano, “Temporal gating in highly scattering media by the degree of optical polarization,” Opt. Lett. 21, 161–163 (1996).
[CrossRef] [PubMed]

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Dilworth, D.

Dowling, K.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1996), pp. 332–335.

Fleming, G. R.

G. R. Fleming, J. M. Morris, G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

French, P. M. W.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1996), pp. 332–335.

Gandjbakhche, A. H.

Heerdt, A. S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Ho, P. P.

L. Wang, P. P. Ho, C. H. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Hyde, S. C. W.

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1996), pp. 332–335.

Leith, E.

Li, X. D.

Liu, C. H.

L. Wang, P. P. Ho, C. H. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Liu, F.

Lopez, J.

Montan, S.

P. S. Anderson, S. Montan, S. Svanberg, “Multicolor imaging system for tissue fluorescence diagnostics; use for tumor and atherosclerotic plaque demarcation,” IEEE J. Quantum Electronics QE-23, 1798–1805 (1987).

Morris, J. M.

G. R. Fleming, J. M. Morris, G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

O’Leary, M. A.

Porter, G.

G. Porter, P. J. Sadkowski, C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Robinson, G. W.

G. R. Fleming, J. M. Morris, G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Sadkowski, P. J.

G. Porter, P. J. Sadkowski, C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Savage, H.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Schantz, S.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

Schmitt, J. M.

Svanberg, S.

P. S. Anderson, S. Montan, S. Svanberg, “Multicolor imaging system for tissue fluorescence diagnostics; use for tumor and atherosclerotic plaque demarcation,” IEEE J. Quantum Electronics QE-23, 1798–1805 (1987).

Tredwell, C. J.

G. Porter, P. J. Sadkowski, C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

Valdmanis, J.

Wang, L.

L. Wang, P. P. Ho, C. H. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Wang, W. B.

W. B. Wang, S. G. Demos, J. Ali, R. R. Alfano, “Imaging fluorescent objects embedded inside animal tissues using polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

Yodh, A. G.

Yoo, K. M.

Zang, Z.-W.

Zhang, G.

L. Wang, P. P. Ho, C. H. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Appl. Opt.

Chem. Phys.

G. R. Fleming, J. M. Morris, G. W. Robinson, “Direct observation of rotational diffusion by picosecond spectroscopy,” Chem. Phys. 17, 91–100 (1976).
[CrossRef]

Chem. Phys. Lett.

G. Porter, P. J. Sadkowski, C. J. Tredwell, “Picosecond rotational diffusion in kinetic and steady state fluorescence spectroscopy,” Chem. Phys. Lett. 49, 416–420 (1977).
[CrossRef]

IEEE J. Quantum Electronics

P. S. Anderson, S. Montan, S. Svanberg, “Multicolor imaging system for tissue fluorescence diagnostics; use for tumor and atherosclerotic plaque demarcation,” IEEE J. Quantum Electronics QE-23, 1798–1805 (1987).

Opt. Commun.

S. G. Demos, H. Savage, A. S. Heerdt, S. Schantz, R. R. Alfano, “Time-resolved degree of polarization for human breast tissue,” Opt. Commun. 124, 439–442 (1996).
[CrossRef]

W. B. Wang, S. G. Demos, J. Ali, R. R. Alfano, “Imaging fluorescent objects embedded inside animal tissues using polarization difference technique,” Opt. Commun. 142, 161–166 (1997).
[CrossRef]

Opt. Lett.

Science

L. Wang, P. P. Ho, C. H. Liu, G. Zhang, R. R. Alfano, “Ballistic 2-D imaging through scattering wall using an ultrafast Kerr gate,” Science 253, 769–771 (1991).
[CrossRef] [PubMed]

Other

K. Dowling, S. C. W. Hyde, J. C. Dainty, P. M. W. French, “2-D fluorescence lifetime imaging using a time-gated image intensifier,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 2 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1996), pp. 332–335.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of apparatus of the test system for optical imaging of a luminous object in a scattering medium with the FPDI method: λ/2, half-wavelength plate for 532 nm; F, filter for cutting off the illuminating light of 532 nm.

Fig. 2
Fig. 2

Images of a luminous object (1-mm-diameter pipet filled with fluorescence dye Eosin) placed in a random medium consisting of 0.08% intralipid solution obtained when the polarizer in front of the CCD is (a) parallel and (b) perpendicular to the polarization of the illuminating beam. (c) The difference image obtained when image (b) is subtracted from image (a). The digitized intensity profiles across a horizontal line at the center of the images of Figs. 2(a), 2(b), and 2(c) are shown in Figs. 2(d), 2(e), and 2(f), respectively.

Fig. 3
Fig. 3

Images of a luminous 1-mm-diameter pipet filled with fluorescence dye Eosin placed in a random medium consisting of 0.08% intralipid solution and absorbing Malachite Green dye obtained when the polarizer in front of the CCD is (a) parallel and (b) perpendicular to the polarization of the illuminating beam. (c) The difference image obtained when image (b) is subtracted from image (a).

Fig. 4
Fig. 4

Digitized normalized image intensity profiles: (a) for the image of the luminous object in the scattering medium shown in Fig. 2(a); (b) for the image of the luminous object in the scattering medium with the FPDI method shown in Fig. 2(c); (c) for the image of the luminous object in the scattering medium containing absorbing Malachite Green dye shown in Fig. 3(a); and (d) for the image of the luminous object in the scattering medium containing absorbing Malachite Green dye with the FPDI method shown in Fig. 3(c). It can be seen that the FWHM for profile (a) reduced to be 1/3 of that for profile (b).

Fig. 5
Fig. 5

Images of a luminous 1-mm-diameter pipet filled with fluorescence dye placed in a scattering medium consisting of 0.09% intralipid solution obtained when the polarizer in front of the CCD is (a) parallel and (b) perpendicular to the polarization of the pump beam. (c) The difference image obtained when image (b) is subtracted from image (a).

Fig. 6
Fig. 6

Digitized normalized image intensity profiles: (a) for the parallel polarization image of the luminous object in the scattering medium shown in Fig. 5(a); (b) for the difference image of the luminous object in the scattering medium with the FPDI method shown in Fig. 5(c); and (c) for the parallel polarization image when the absorbing dye of Malachite Green was introduced into the 0.09% intralipid scattering medium. It can be seen again that an approximately threefold improvement of the image quality was approached when the FPDI method was used.

Metrics