Abstract

Model diffraction-limited optical systems are examined for the effects of radiation-induced compaction on optical performance. The Zernike phase aberration terms resulting from 193-nm-induced compaction in a model lithographic system are calculated with Fourier optics and ray tracing. Using experimental densification rates and the extracted aberration terms, we develop equations describing a useful system lifetime as a function of relevant system variables. In the example examined, the useful life depends strongly on the throughput, resist sensitivity, and partial coherence.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
    [CrossRef]
  2. R. Schenker, F. Piao, W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 698–706 (1996).
    [CrossRef]
  3. R. Schenker, F. Piao, W. G. Oldham, “Durability of experimental fused silicas to 193-nm-induced compaction,” Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 44–53 (1997).
    [CrossRef]
  4. D. C. Allan, C. Smith, N. F. Borrelli, T. P. Seward, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
    [CrossRef] [PubMed]
  5. D. L. Griscom, “Nature of defects and defect generation in optical glasses,” in Radiation Effects in Optical Materials, E. J. Friebele, ed., Proc. SPIE541, 38–59 (1985).
    [CrossRef]
  6. N. Harned, J. McClay, J. J. Shamaly, “Laser-damage impact on lithography system throughput,” IEEE J. Sel. Top. Quantum Electron. 1, 837–840 (1995).
    [CrossRef]
  7. W. Kaiser, Carl Zeiss, Germany (personal communication, 1997).
  8. A. Suzuki, Canon, Inc., Japan (personal communication, 1997).
  9. R. Schenker, W. Oldham, “The effects of compaction on 193-nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
    [CrossRef]
  10. For more information, see M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1993).
  11. Simulations performed with FEAP, a finite element simulation package developed and written by R. L. Taylor, Department of Civil Engineering, University of California, Berkeley, Calif.
  12. For more information on these concepts, see J. W. Goodman , Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1995) and J. W. Goodman, Statistical Optics (Wiley, New York, 1985).
  13. V. N. Mahajan, “Zernike circle polynomials and optical aberrations of systems with circular pupils,” Appl. Opt. 33, 8121–8124 (1994).
    [CrossRef] [PubMed]
  14. D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
    [CrossRef]
  15. D. M. Williamson, U.S. patent5,212,593 (18May1993).
  16. Model based on D. M. Williamson, U.S. patent5,212,593 and is similar to the experimental 193-nm system at Lincoln Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts.

1997 (1)

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

1996 (2)

R. Schenker, W. Oldham, “The effects of compaction on 193-nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

D. C. Allan, C. Smith, N. F. Borrelli, T. P. Seward, “193-nm excimer-laser-induced densification of fused silica,” Opt. Lett. 21, 1960–1962 (1996).
[CrossRef] [PubMed]

1995 (1)

N. Harned, J. McClay, J. J. Shamaly, “Laser-damage impact on lithography system throughput,” IEEE J. Sel. Top. Quantum Electron. 1, 837–840 (1995).
[CrossRef]

1994 (1)

Allan, D. C.

Andresen, K.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Born, M.

For more information, see M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1993).

Borrelli, N. F.

Gallatin, G.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Goodman, J. W.

For more information on these concepts, see J. W. Goodman , Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1995) and J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Griscom, D. L.

D. L. Griscom, “Nature of defects and defect generation in optical glasses,” in Radiation Effects in Optical Materials, E. J. Friebele, ed., Proc. SPIE541, 38–59 (1985).
[CrossRef]

Harned, N.

N. Harned, J. McClay, J. J. Shamaly, “Laser-damage impact on lithography system throughput,” IEEE J. Sel. Top. Quantum Electron. 1, 837–840 (1995).
[CrossRef]

Himel, M.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Ivaldi, J.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Kaiser, W.

W. Kaiser, Carl Zeiss, Germany (personal communication, 1997).

Mahajan, V. N.

Mason, C.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

McClay, J.

N. Harned, J. McClay, J. J. Shamaly, “Laser-damage impact on lithography system throughput,” IEEE J. Sel. Top. Quantum Electron. 1, 837–840 (1995).
[CrossRef]

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

McCullough, A.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Oldham, W.

R. Schenker, W. Oldham, “The effects of compaction on 193-nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

Oldham, W. G.

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

R. Schenker, F. Piao, W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 698–706 (1996).
[CrossRef]

R. Schenker, F. Piao, W. G. Oldham, “Durability of experimental fused silicas to 193-nm-induced compaction,” Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 44–53 (1997).
[CrossRef]

Otis, C.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Piao, F.

R. Schenker, F. Piao, W. G. Oldham, “Durability of experimental fused silicas to 193-nm-induced compaction,” Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 44–53 (1997).
[CrossRef]

R. Schenker, F. Piao, W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 698–706 (1996).
[CrossRef]

Schenker, R.

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

R. Schenker, W. Oldham, “The effects of compaction on 193-nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

R. Schenker, F. Piao, W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 698–706 (1996).
[CrossRef]

R. Schenker, F. Piao, W. G. Oldham, “Durability of experimental fused silicas to 193-nm-induced compaction,” Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 44–53 (1997).
[CrossRef]

Seward, T. P.

Shamaly, J.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Shamaly, J. J.

N. Harned, J. McClay, J. J. Shamaly, “Laser-damage impact on lithography system throughput,” IEEE J. Sel. Top. Quantum Electron. 1, 837–840 (1995).
[CrossRef]

Smith, C.

Suzuki, A.

A. Suzuki, Canon, Inc., Japan (personal communication, 1997).

Tomczyk, C.

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Williamson, D. M.

D. M. Williamson, U.S. patent5,212,593 (18May1993).

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

Wolf, E.

For more information, see M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1993).

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

N. Harned, J. McClay, J. J. Shamaly, “Laser-damage impact on lithography system throughput,” IEEE J. Sel. Top. Quantum Electron. 1, 837–840 (1995).
[CrossRef]

J. Appl. Phys. (1)

R. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

R. Schenker, W. Oldham, “The effects of compaction on 193-nm lithographic system performance,” J. Vac. Sci. Technol. B 14, 3709–3713 (1996).
[CrossRef]

Opt. Lett. (1)

Other (11)

D. L. Griscom, “Nature of defects and defect generation in optical glasses,” in Radiation Effects in Optical Materials, E. J. Friebele, ed., Proc. SPIE541, 38–59 (1985).
[CrossRef]

W. Kaiser, Carl Zeiss, Germany (personal communication, 1997).

A. Suzuki, Canon, Inc., Japan (personal communication, 1997).

For more information, see M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Pergamon, Oxford, 1993).

Simulations performed with FEAP, a finite element simulation package developed and written by R. L. Taylor, Department of Civil Engineering, University of California, Berkeley, Calif.

For more information on these concepts, see J. W. Goodman , Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1995) and J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

R. Schenker, F. Piao, W. G. Oldham, “Material limitations to 193-nm lithographic system lifetimes,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 698–706 (1996).
[CrossRef]

R. Schenker, F. Piao, W. G. Oldham, “Durability of experimental fused silicas to 193-nm-induced compaction,” Optical Microlithography X, G. E. Fuller, ed., Proc. SPIE3051, 44–53 (1997).
[CrossRef]

D. M. Williamson, J. McClay, K. Andresen, G. Gallatin, M. Himel, J. Ivaldi, C. Mason, A. McCullough, C. Otis, J. Shamaly, C. Tomczyk, “Micrascan III, 0.25um resolution step and scan system,” in Optical Microlithography IX, G. E. Fuller, ed., Proc. SPIE2726, 780–786 (1996).
[CrossRef]

D. M. Williamson, U.S. patent5,212,593 (18May1993).

Model based on D. M. Williamson, U.S. patent5,212,593 and is similar to the experimental 193-nm system at Lincoln Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Simplified beam path through catadioptric beam-splitter cube. Shaded regions indicate areas with double and triple the single-pass intensity.

Fig. 2
Fig. 2

Model optical system for evaluation of compaction on system imaging. The blocks are 18, 16, and 6 cm long. The lenses have focal lengths of 45.5, 11.9, 15.5, and 15.5 cm. The distance from the first lens to the first block is 34 cm, and the distance from the last lens to the wafer is 4 mm. Rays shown are zero, plus one, and minus one diffracted orders for periodic 0.18-μm lines and spaces. One of the diffracted orders travels through a large portion of the damaged region whereas the other travels through only undamaged material.

Tables (5)

Tables Icon

Table 1 Definition of Symbols Used in Analysis

Tables Icon

Table 2 OPD per Centimeter of Fused Silica at 193 nm for (Δρ/ρ)u = 1 ppm for Different Lens Geometriesa

Tables Icon

Table 3 Induced Wave-Front Aberrations in Waves (λ = 193 nm) from 1-ppm Unconstrained Compaction in Elements near the Pupil Plane for Single-Beam Pass (30-cm Total Path Length)

Tables Icon

Table 4 Induced Wave-Front Aberrationsa in Waves (λ = 193 nm) from 1-ppm Unconstrained Compaction (in Single-Pass Intensity Regions) in Elements near the Pupil Plane with Folded Beam Path

Tables Icon

Table 5 Induced Wave-Front Aberrations in Waves (λ = 193 nm) from 1-ppm Unconstrained Compactiona in Optical Elements near Wafer Plane (Model System)b

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Δρ/ρu=κ Np107II02τ0τ0.7,
TPT200-mm wph=3600 shUeffAfRpPfAwafer.
Δnnnet=n2-1n2+26n21+ΩΔρρnet,
OPD per centimeter of fused silica at 193 nm=0.013λΔρρu1 ppm.
Epupil=EwaferAfTmaskπσDpp/22Tpw,
Lifetime=βσ0.2 ppmκ10.7×τ11 nsRp1000 HzUeff0.20J025 mJ/cm22TPT65 200-mm wph2×30 cmL10.7Dpp15 cm4Tpw0.78Tmask0.602βσ, pupil plane=17 yearsσin=0.5, σout=0.766 yearsσ=0.5600 yearsσ=0.7,
βσ, folded pupil plane=17 yearsσin=0.5, σout=0.718 yearsσ=0.5128 yearsσ=0.7.
Lifetime=βσ0.2 ppmκ10.7×τ11 nsRp1000 HzUeff0.20J025 mJ/cm22TPT65200-mm wph2×1Tmask0.602,βσ, wafer elements=6.4 yearsσ=0.59.8 yearsσ=0.7,
βσ,total one-pass pupil plane=6.0 yearsσ=0.59.8 yearsσ=0.7,βσ,total folded pupil plane=5.2 yearsσ=0.59.6 yearsσ=0.7.

Metrics