Abstract

Earth-looking imaging spectrometers operating in the solar-reflected spectrum measure spectra of the total upwelling radiance for each spatial element in an image. These measurements are used to derive physical parameters of the Earth’s surface and atmosphere from the energy, molecular absorption, and constituent scattering characteristics expressed in each spectrum. To achieve these quantitative objectives, the measured spectra must be spectrally, radiometrically, and spatially calibrated. The ubiquitous presence of numerous, strong, narrow atmosphere and solar absorptions in the upwelling spectral radiance in conjunction with the narrow spectral channels of imaging spectrometers forms the basis for a general spectral calibration requirement. In order to determine the requirement for spectral calibration accuracy, a sensitivity analysis has been completed for imaging spectrometers with contiguously sampled spectral channel response functions of 5, 10, and 20 nm full width at half-maximum from 400 to 2500 nm. This sensitivity analysis shows that spectral calibration errors of 10% and 5% cause significant, spectrally distinct errors in the measured radiance throughout the solar-reflected spectrum. These errors result from the sensitivity of the measured radiance to the exact convolution of the narrow channels of imaging spectrometers with the upwelling spectral radiance that contains narrow atmosphere and solar absorptions. These errors are systematic and add directly to the radiometric calibration uncertainty for every spectrum in the image. This analysis establishes that a spectral calibration accuracy approaching 1% of the full width at half-maximum throughput of the spectral response function for both spectral channel position and shape is necessary to suppress these errors in the measured radiance spectrum.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. G. P. Anderson, J. Wang, J. Chetwynd, “An update and recent validations against airborne high resolution interferometer measurements,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 5–8.
  2. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Final report GL-TR-0122 (U.S. Air Force Geophysics Laboratory, Hanscomb AFB, Mass., 1989), Vol. 42.
  3. J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
    [CrossRef]
  4. R. O. Green, G. Vane, J. E. Conel, “Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, JPL Pub. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif., 1988), pp. 162–184.
  5. R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
    [CrossRef]
  6. R. O. Green, “An improved spectral calibration requirement for AVIRIS,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 75–78.

Alley, R. E.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Anderson, G. P.

G. P. Anderson, J. Wang, J. Chetwynd, “An update and recent validations against airborne high resolution interferometer measurements,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 5–8.

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Final report GL-TR-0122 (U.S. Air Force Geophysics Laboratory, Hanscomb AFB, Mass., 1989), Vol. 42.

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Final report GL-TR-0122 (U.S. Air Force Geophysics Laboratory, Hanscomb AFB, Mass., 1989), Vol. 42.

Biggar, S. F.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Bruegge, C. J.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

Carrere, V.

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Chetwynd, J.

G. P. Anderson, J. Wang, J. Chetwynd, “An update and recent validations against airborne high resolution interferometer measurements,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 5–8.

Chrien, T. G.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Conel, J. E.

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

R. O. Green, G. Vane, J. E. Conel, “Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, JPL Pub. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif., 1988), pp. 162–184.

Green, R. O.

R. O. Green, G. Vane, J. E. Conel, “Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, JPL Pub. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif., 1988), pp. 162–184.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

R. O. Green, “An improved spectral calibration requirement for AVIRIS,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 75–78.

Hoover, G.

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

Jackson, R. D.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Margolis, J. S.

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Moran, M. S.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Rast, M.

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Final report GL-TR-0122 (U.S. Air Force Geophysics Laboratory, Hanscomb AFB, Mass., 1989), Vol. 42.

Slater, P. N.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Teillet, P. M.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

Vane, G.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

R. O. Green, G. Vane, J. E. Conel, “Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, JPL Pub. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif., 1988), pp. 162–184.

Wang, J.

G. P. Anderson, J. Wang, J. Chetwynd, “An update and recent validations against airborne high resolution interferometer measurements,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 5–8.

Other

G. P. Anderson, J. Wang, J. Chetwynd, “An update and recent validations against airborne high resolution interferometer measurements,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 5–8.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Final report GL-TR-0122 (U.S. Air Force Geophysics Laboratory, Hanscomb AFB, Mass., 1989), Vol. 42.

J. E. Conel, R. O. Green, R. E. Alley, C. J. Bruegge, V. Carrere, J. S. Margolis, G. Vane, T. G. Chrien, P. N. Slater, S. F. Biggar, P. M. Teillet, R. D. Jackson, M. S. Moran, “In-flight radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS),” in Recent Advances in Sensors, Radiometry, and Data Processing for Remote Sensing, P. N. Slater, ed., Proc. SPIE924, 179–195 (1988).
[CrossRef]

R. O. Green, G. Vane, J. E. Conel, “Determination of in-flight AVIRIS spectral, radiometric, spatial and signal-to-noise characteristics using atmospheric and surface measurements from the vicinity of the rare-earth-bearing carbonatite at Mountain Pass, California,” in Proceedings of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Performance Evaluation Workshop, JPL Pub. 88-38 (Jet Propulsion Laboratory, Pasadena, Calif., 1988), pp. 162–184.

R. O. Green, J. E. Conel, J. S. Margolis, V. Carrere, C. J. Bruegge, M. Rast, G. Hoover, “In-flight validation and calibration of the spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (AVIRIS),” in Imaging Spectrometry of the Terrestrial Environment, G. Vane, ed., Proc. SPIE1298, 18–36 (1990).
[CrossRef]

R. O. Green, “An improved spectral calibration requirement for AVIRIS,” in Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Vol. 1, AVIRIS Workshop, JPL 95-1 (Jet Propulsion Laboratory, Pasadena, Calif., 1995), pp. 75–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Upwelling spectral radiance modeled at 0.5-nm spectral resolution with the MODTRAN radiative transfer code across the solar-reflected spectrum. Numerous, strong, and narrow solar and atmosphere absorptions are expressed across the spectrum.

Fig. 2
Fig. 2

Convolution of the modeled high-resolution, upwelling radiance spectrum with the spectral response functions of an imaging spectrometer is shown from 650 to 1350 nm. The measured radiance results from the exact spectral partitioning of the upwelling radiance by the 10-nm, FWHM spectral response functions.

Fig. 3
Fig. 3

Percent error in measured radiance for a 10-nm imaging spectrometer (a) from the 1.0-, 0.5-, and 0.1-nm errors in the spectral calibration of the channel position and (b) from the 1.0-, 0.5-, and 0.1-nm errors in spectral calibration of channel FWHM.

Fig. 4
Fig. 4

Percent error in measured radiance for an imaging spectrometer with 5-nm channels resulting from (a) errors in calibration of channel position and (b) errors in calibration of channel FWHM.

Fig. 5
Fig. 5

Percent error in measured radiance for an imaging spectrometer with 20-nm channels resulting from (a) errors in calibration of spectral position and (b) errors in calibration of channel FWHM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L i =   Sf λ - λ i L λ d λ .

Metrics