Abstract

We present experimental evidence that the action of γ radiation on an optical system can result in significant wave-front aberrations. To quantify such aberrations with sufficient accuracy for diffraction-limited optical systems, we have used a phenomenological approach based on the concept of dose coefficients. We have measured the dose coefficients for LaK9 and LaK9G15 glasses. Our results confirm this approach and indicate that radiation-induced wave-front aberrations cannot necessarily be neglected for space optical systems that use radiation-hardened glasses.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Lepretre, “Lens assemblies for multispectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-Bäumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
    [CrossRef]
  2. R. H. Czichy, Hybrid Optics for Space Applications (European Space Agency, Noordwijk, The Netherlands, 1993), Vol. ESA SP-1158.
  3. D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
    [CrossRef]
  4. A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
    [CrossRef]
  5. J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Materials (European Space Agency, Noordwijk, The Netherlands, 1979), Vol. ESA SP-145, pp. 275–285.
  6. L. B. Glebov, V. G. Docuchaev, N. V. Nikonorov, “Glass matrix strain caused by photo-induced charging of points defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
    [CrossRef]
  7. W. Primak, E. Edwards, “Ionization expansion of compacted silica and radiation induced dilatations in vitreous silica,” Phys. Rev. 133, 531–545 (1964).
    [CrossRef]
  8. I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).
  9. M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 284–295 (1992).
    [CrossRef]
  10. G. A. Al-Jumaily, “Effects of radiation on the optical properties of glass materials,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 26–34 (1992).
    [CrossRef]
  11. A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. (USSR) 76, 822–827 (1994).
  12. D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
    [CrossRef]
  13. D. L. Griscom, M. E. Gingerich, E. J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
    [CrossRef] [PubMed]
  14. A. I. Gusarov, “Efficiency of defects generation due to irradiation in silica,” Solid State Commun. 91, 661–665 (1994).
    [CrossRef]
  15. P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
    [CrossRef]
  16. A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).
  17. A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59, 603–614 (1930).
    [CrossRef]
  18. C. I. Merzbacher, E. J. Friebele, J. A. Ruller, P. Matic, “Finite element analysis of deformation in large optics due to space environment radiation,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 222–228 (1991).
    [CrossRef]
  19. J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
    [CrossRef]
  20. A. Aben, C. Guillemet, Photoelasticity of Glass (Springer-Verlag, Berlin, 1993).
    [CrossRef]
  21. M. Rothschild, J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
    [CrossRef]
  22. A. Holmes-Siedle, L. Adams, Handbook of Radiation Effects (Oxford University, London, 1993), App. E.

1995 (1)

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

1994 (2)

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. (USSR) 76, 822–827 (1994).

A. I. Gusarov, “Efficiency of defects generation due to irradiation in silica,” Solid State Commun. 91, 661–665 (1994).
[CrossRef]

1993 (1)

D. L. Griscom, M. E. Gingerich, E. J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef] [PubMed]

1991 (2)

L. B. Glebov, V. G. Docuchaev, N. V. Nikonorov, “Glass matrix strain caused by photo-induced charging of points defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

1989 (1)

M. Rothschild, J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

1988 (1)

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

1970 (1)

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
[CrossRef]

1965 (1)

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

1964 (1)

W. Primak, E. Edwards, “Ionization expansion of compacted silica and radiation induced dilatations in vitreous silica,” Phys. Rev. 133, 531–545 (1964).
[CrossRef]

1930 (1)

A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59, 603–614 (1930).
[CrossRef]

Aben, A.

A. Aben, C. Guillemet, Photoelasticity of Glass (Springer-Verlag, Berlin, 1993).
[CrossRef]

Adams, L.

A. Holmes-Siedle, L. Adams, Handbook of Radiation Effects (Oxford University, London, 1993), App. E.

Al-Jumaily, G. A.

G. A. Al-Jumaily, “Effects of radiation on the optical properties of glass materials,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 26–34 (1992).
[CrossRef]

Bishay, A.

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
[CrossRef]

Boehm, L.

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 284–295 (1992).
[CrossRef]

Bourrieau, J.

J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Materials (European Space Agency, Noordwijk, The Netherlands, 1979), Vol. ESA SP-145, pp. 275–285.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

Bricard, P.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

Czichy, R. H.

R. H. Czichy, Hybrid Optics for Space Applications (European Space Agency, Noordwijk, The Netherlands, 1993), Vol. ESA SP-1158.

D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
[CrossRef]

Diikov, A. L.

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

Docuchaev, V. G.

L. B. Glebov, V. G. Docuchaev, N. V. Nikonorov, “Glass matrix strain caused by photo-induced charging of points defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

Dodge, M. L.

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

Doyle, D. B.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
[CrossRef]

Edwards, E.

W. Primak, E. Edwards, “Ionization expansion of compacted silica and radiation induced dilatations in vitreous silica,” Phys. Rev. 133, 531–545 (1964).
[CrossRef]

Ehrlich, J.

M. Rothschild, J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Friebele, E. J.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef] [PubMed]

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

C. I. Merzbacher, E. J. Friebele, J. A. Ruller, P. Matic, “Finite element analysis of deformation in large optics due to space environment radiation,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 222–228 (1991).
[CrossRef]

Gingerich, M. E.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef] [PubMed]

Glebov, L. B.

L. B. Glebov, V. G. Docuchaev, N. V. Nikonorov, “Glass matrix strain caused by photo-induced charging of points defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

Graham, E. R.

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

Griscom, D. L.

D. L. Griscom, M. E. Gingerich, E. J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef] [PubMed]

Guillemet, C.

A. Aben, C. Guillemet, Photoelasticity of Glass (Springer-Verlag, Berlin, 1993).
[CrossRef]

Gusarov, A. I.

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. (USSR) 76, 822–827 (1994).

A. I. Gusarov, “Efficiency of defects generation due to irradiation in silica,” Solid State Commun. 91, 661–665 (1994).
[CrossRef]

Higby, P. L.

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

Holmes-Siedle, A.

A. Holmes-Siedle, L. Adams, Handbook of Radiation Effects (Oxford University, London, 1993), App. E.

Ignat’ev, F. N.

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. (USSR) 76, 822–827 (1994).

Johlander, B.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

Juranek, H. J.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

Kinser, D. L.

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

Lepretre, F.

F. Lepretre, “Lens assemblies for multispectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-Bäumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
[CrossRef]

Liepmann, M. J.

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 284–295 (1992).
[CrossRef]

Litzelmann, A.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

Malitson, I. H.

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

Matic, P.

C. I. Merzbacher, E. J. Friebele, J. A. Ruller, P. Matic, “Finite element analysis of deformation in large optics due to space environment radiation,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 222–228 (1991).
[CrossRef]

Merzbacher, C. I.

C. I. Merzbacher, E. J. Friebele, J. A. Ruller, P. Matic, “Finite element analysis of deformation in large optics due to space environment radiation,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 222–228 (1991).
[CrossRef]

Nikonorov, N. V.

L. B. Glebov, V. G. Docuchaev, N. V. Nikonorov, “Glass matrix strain caused by photo-induced charging of points defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

Pannhorst, W.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

Primak, W.

W. Primak, E. Edwards, “Ionization expansion of compacted silica and radiation induced dilatations in vitreous silica,” Phys. Rev. 133, 531–545 (1964).
[CrossRef]

Rajaram, M.

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

Rits, W.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

Roméro, M.

J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Materials (European Space Agency, Noordwijk, The Netherlands, 1979), Vol. ESA SP-145, pp. 275–285.

Rothschild, M.

M. Rothschild, J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Ruller, J. A.

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

C. I. Merzbacher, E. J. Friebele, J. A. Ruller, P. Matic, “Finite element analysis of deformation in large optics due to space environment radiation,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 222–228 (1991).
[CrossRef]

Shaver, D. C.

M. Rothschild, J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Shaw, C. M.

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

Smakula, A.

A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59, 603–614 (1930).
[CrossRef]

Vagish, Z.

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 284–295 (1992).
[CrossRef]

Volchek, A. O.

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. (USSR) 76, 822–827 (1994).

Wolff, E. G.

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

M. Rothschild, J. Ehrlich, D. C. Shaver, “Effects of excimer laser irradiation on the transmission, index of refraction and density of ultraviolet grade fused silica,” Appl. Phys. Lett. 55, 1276–1278 (1989).
[CrossRef]

Glass Phys. Chem. (1)

A. O. Volchek, A. I. Gusarov, A. L. Diikov, F. N. Ignat’ev, “Change of the refractive index of silicate glasses under ionizing radiation,” Glass Phys. Chem. 21, 107–110 (1995).

J. Am. Ceram. Soc. (1)

P. L. Higby, E. J. Friebele, C. M. Shaw, M. Rajaram, E. R. Graham, D. L. Kinser, E. G. Wolff, “Radiation effects on the physical properties of low-expansion-coefficient glasses and ceramics,” J. Am. Ceram. Soc. 71, 796–802 (1988).
[CrossRef]

J. Non-Cryst. Solids (3)

J. A. Ruller, E. J. Friebele, “The effect of gamma-irradiation on the density of various types of silica,” J. Non-Cryst. Solids 136, 163–172 (1991).
[CrossRef]

A. Bishay, “Radiation induced color centers in multicomponent glasses,” J. Non-Cryst. Solids 3, 54–114 (1970).
[CrossRef]

L. B. Glebov, V. G. Docuchaev, N. V. Nikonorov, “Glass matrix strain caused by photo-induced charging of points defects,” J. Non-Cryst. Solids 128, 166–171 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

I. H. Malitson, M. L. Dodge, “Radiation-induced instability in refractive properties of some optical glasses,” J. Opt. Soc. Am. 55, 1583 (1965).

Opt. Spectrosc. (USSR) (1)

A. O. Volchek, A. I. Gusarov, F. N. Ignat’ev, “The influence of radiation-induced changes of dielectric and mechanical characteristics of optical materials on the image structure,” Opt. Spectrosc. (USSR) 76, 822–827 (1994).

Phys. Rev. (1)

W. Primak, E. Edwards, “Ionization expansion of compacted silica and radiation induced dilatations in vitreous silica,” Phys. Rev. 133, 531–545 (1964).
[CrossRef]

Phys. Rev. Lett. (1)

D. L. Griscom, M. E. Gingerich, E. J. Friebele, “Radiation-induced defects in glasses: origin of power-law dependence of concentration on dose,” Phys. Rev. Lett. 71, 1019–1022 (1993).
[CrossRef] [PubMed]

Solid State Commun. (1)

A. I. Gusarov, “Efficiency of defects generation due to irradiation in silica,” Solid State Commun. 91, 661–665 (1994).
[CrossRef]

Z. Phys. (1)

A. Smakula, “Über Erregung und Entfärbung lichtelektrisch leitender Alkalihalogenide,” Z. Phys. 59, 603–614 (1930).
[CrossRef]

Other (10)

C. I. Merzbacher, E. J. Friebele, J. A. Ruller, P. Matic, “Finite element analysis of deformation in large optics due to space environment radiation,” in Optomechanics and Dimensional Stability, R. A. Paquin, D. Vukobratovich, eds., Proc. SPIE1533, 222–228 (1991).
[CrossRef]

A. Aben, C. Guillemet, Photoelasticity of Glass (Springer-Verlag, Berlin, 1993).
[CrossRef]

D. B. Doyle, R. H. Czichy, “Influence of simulated space radiation on optical glasses,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-Bäumen, E. Sein, eds., Proc. SPIE2210, 434–448 (1994).
[CrossRef]

M. J. Liepmann, L. Boehm, Z. Vagish, “Gamma radiation effects on some optical glasses,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 284–295 (1992).
[CrossRef]

G. A. Al-Jumaily, “Effects of radiation on the optical properties of glass materials,” in Damage to Space Optics and Properties and Characteristics of Optical Glass, J. B. Beckinridge, A. J. Marker, eds., Proc. SPIE1761, 26–34 (1992).
[CrossRef]

J. Bourrieau, M. Roméro, “Effect of space charged particle environment on optical components and materials,” in Proceedings of the ESA Symposium on Spacecraft Materials (European Space Agency, Noordwijk, The Netherlands, 1979), Vol. ESA SP-145, pp. 275–285.

F. Lepretre, “Lens assemblies for multispectral camera,” in Space Optics 1994: Space Instrumentation and Spacecraft Optics, T. M. Dewandre, J. J. Schulte-in-Bäumen, E. Sein, eds., Proc. SPIE2210, 587–600 (1994).
[CrossRef]

R. H. Czichy, Hybrid Optics for Space Applications (European Space Agency, Noordwijk, The Netherlands, 1993), Vol. ESA SP-1158.

D. B. Doyle, J. Bourrieau, P. Bricard, B. Johlander, H. J. Juranek, A. Litzelmann, W. Pannhorst, W. Rits, “The effect of electron irradiation on the radius of curvature of a zerodur mirror,” in Specification, Production, and Testing of Optical Components and Systems, A. E. Gee, J.-F. Houee, eds., Proc. SPIE2275, 166–189 (1996).
[CrossRef]

A. Holmes-Siedle, L. Adams, Handbook of Radiation Effects (Oxford University, London, 1993), App. E.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experiment geometry.

Fig. 2
Fig. 2

OPD maps for (a) LaK9 and (b) LaK9G15 glass samples identically irradiated, in a nonuniform way, as shown in Fig. 1 with the total dose of 800 krad (ΔD = 400 krad). The amplitudes of the WFI effect for each sample correspond to OPD values at the center of each plot and are -1.5 and 110 nm for (a) and (b), respectively. In (c) is shown the (detectable) surface dilatation effect measured on LaK9G15 glass (sample 3) irradiated with the dose of 800 krad (ΔD = 400 krad). The high-frequency noise component (roughness) was removed by means of 2σ low-pass spatial filtering.

Fig. 3
Fig. 3

(a) Induced WFI dose dependence for LaK9G15. (b) Normalized amplitude of WFI versus time during postradiative annealing at room temperature.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Δ ρ / ρ = α D ,   Δ n / n = β D .
Δ Λ r = 1 2 - H H Δ n x + Δ n y d z ,
Δ Λ r = 2 L Δ n cc r + 2 u z r n 0 - 1 + 1 2 - L L Δ n x el r ,   z + Δ n y el r ,   z d z ,
Δ Λ r = 2 L Δ n cc r + Δ n el r + 2 u z r n 0 - 1 .
Δ Λ = Δ Λ R m - Δ Λ r m = 2 L n 0 - 1 V p Δ D ,   V p = β n 0 / n 0 - 1 + α l ,
S r = Δ Λ r + ζ r ,   φ + n = 1 a n cos n φ + b n sin n φ ,
S r 0 circ = Δ Λ r 0 ,
Δ Λ = S R m circ - S r m circ ,   r m     R 0     R m .
Δ f / f = - VD ,   V = β n 0 / n 0 - 1 - α l .
Δ F / F = - F   i   V i D / f i = - V ¯ D ,

Metrics