Abstract

Microlenses and microlens arrays were formed directly on a surface of a glass plate by use of a CO2 laser. When the surface of a glass plate is heated locally to a working point of the glass material by use of a focused CO2 laser beam, it tends to become a hyperboloid owing to surface tension, which results in a microlens. A profile of the microlens was measured with an ultrahigh accurate three-dimensional profilometer (Model UA3P, Matsusita Electric Industrial Company Ltd.) that utilizes a specially designed atomic force microscope. An intensity profile and a spot diameter at the focus of the microlens were measured with a microscope and a CCD system utilizing a He–Ne laser as a light source. The focused spot FWHM diameter of 1.35 μm was obtained, and the modulation transfer function was derived from the spot profile. Microlens arrays were also fabricated and characterized.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).
  2. N. F. Borrelli, D. L. Morse, “Microlens arrays produced by a photolytic technique,” Appl. Opt. 27, 476–479 (1988).
    [CrossRef] [PubMed]
  3. K. Suzuki, T. Taniyama, T. Matsutani, “Process of glass small lens by carbon dioxide laser,” Rev. Laser Eng. 14, 880–888 (1986).
    [CrossRef]
  4. K. Suzuki, T. Taniyama, J. Nakata, T. Matsutani, “Processing of glass micro lens array by CO2 laser,” Rev. Laser Eng. 15, 113–119 (1987).
    [CrossRef]
  5. U. C. Paek, A. L. Weaver, “Formation of a spherical lens at optical fiber ends with CO2 laser,” Appl. Opt. 14, 294–298 (1975).
    [CrossRef] [PubMed]
  6. H. M. Presby, A. F. Benner, “Laser micromachinig of efficient fiber microlenses,” Appl. Opt. 29, 2692–2695 (1990).
    [CrossRef] [PubMed]
  7. V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
    [CrossRef]
  8. V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
    [CrossRef]

1990 (1)

1988 (1)

1987 (1)

K. Suzuki, T. Taniyama, J. Nakata, T. Matsutani, “Processing of glass micro lens array by CO2 laser,” Rev. Laser Eng. 15, 113–119 (1987).
[CrossRef]

1986 (1)

K. Suzuki, T. Taniyama, T. Matsutani, “Process of glass small lens by carbon dioxide laser,” Rev. Laser Eng. 14, 880–888 (1986).
[CrossRef]

1981 (1)

M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).

1975 (1)

Abbakumov, M. O.

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

Benner, A. F.

Borrelli, N. F.

Chujko, V. A.

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

Fomichov, P. A.

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

Frolov, V. V.

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

Iga, K.

M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).

Kromin, A. K.

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

Matsutani, T.

K. Suzuki, T. Taniyama, J. Nakata, T. Matsutani, “Processing of glass micro lens array by CO2 laser,” Rev. Laser Eng. 15, 113–119 (1987).
[CrossRef]

K. Suzuki, T. Taniyama, T. Matsutani, “Process of glass small lens by carbon dioxide laser,” Rev. Laser Eng. 14, 880–888 (1986).
[CrossRef]

Morse, D. L.

Nakata, J.

K. Suzuki, T. Taniyama, J. Nakata, T. Matsutani, “Processing of glass micro lens array by CO2 laser,” Rev. Laser Eng. 15, 113–119 (1987).
[CrossRef]

Nishizawa, K.

M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).

Oikawa, M.

M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).

Paek, U. C.

Presby, H. M.

Shakola, A. T.

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

Sunada, T.

M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).

Suzuki, K.

K. Suzuki, T. Taniyama, J. Nakata, T. Matsutani, “Processing of glass micro lens array by CO2 laser,” Rev. Laser Eng. 15, 113–119 (1987).
[CrossRef]

K. Suzuki, T. Taniyama, T. Matsutani, “Process of glass small lens by carbon dioxide laser,” Rev. Laser Eng. 14, 880–888 (1986).
[CrossRef]

Taniyama, T.

K. Suzuki, T. Taniyama, J. Nakata, T. Matsutani, “Processing of glass micro lens array by CO2 laser,” Rev. Laser Eng. 15, 113–119 (1987).
[CrossRef]

K. Suzuki, T. Taniyama, T. Matsutani, “Process of glass small lens by carbon dioxide laser,” Rev. Laser Eng. 14, 880–888 (1986).
[CrossRef]

Veiko, V. P.

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

Weaver, A. L.

Yakovlev, E. B.

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

Yamamoto, N.

M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).

Appl. Opt. (3)

Jpn. J. Appl. Phys (1)

M. Oikawa, K. Iga, T. Sunada, N. Yamamoto, K. Nishizawa, “Array of distributed-index planar micro-lenses prepared from ion exchange technique,” Jpn. J. Appl. Phys 20, L291–L293 (1981).

Rev. Laser Eng. (2)

K. Suzuki, T. Taniyama, T. Matsutani, “Process of glass small lens by carbon dioxide laser,” Rev. Laser Eng. 14, 880–888 (1986).
[CrossRef]

K. Suzuki, T. Taniyama, J. Nakata, T. Matsutani, “Processing of glass micro lens array by CO2 laser,” Rev. Laser Eng. 15, 113–119 (1987).
[CrossRef]

Other (2)

V. P. Veiko, E. B. Yakovlev, V. V. Frolov, V. A. Chujko, A. K. Kromin, M. O. Abbakumov, A. T. Shakola, P. A. Fomichov, “Laser heating and evaporation of glass and glass-boring materials and its application for creating MOC,” in Miniature and Micro-Optics: Fabrication and System Applications, C. S. Roychoudhuri, W. B. Veldkamp, eds., Proc. SPIE1544, 152–163 (1991).
[CrossRef]

V. P. Veiko, A. K. Kromin, E. B. Yakovlev, “Laser fabrication of MOC based on soft laser heating of glass and glass-like materials,” in Miniature and Micro-Optics and Micromechanics, N. C. Gallagher, C. S. Roychoudhuri, eds., Proc. SPIE1992, 159–167 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic drawing of a typical optical setup for the fabrication of microlenses by use of a CO2 laser.

Fig. 2
Fig. 2

Conceptional schematic diagram to show the physical process used to form a microlens on a glass plate by the absorption of a CO2 laser beam. (a) A CO2 laser beam (wavelength of 10.6 μm) focused on a surface of a glass plate is absorbed at the surface of a plate. (b) The temperature of the surface of a glass plate is raised, and the surface becomes partially soft, which starts deforming the surface. (c) The temperature of the surface continues rising until it reaches the working point (1160 °C for Corning 7059) of the glass. (d) In these conditions, part of the surface of the glass plate forms a sphericallike microlens owing to the surface tension of the melted glass.

Fig. 3
Fig. 3

Cross-sectional profile of a microlens measured with an Ultrahigh Accurate 3-D profilometer that utilizes a specially designed AFM.

Fig. 4
Fig. 4

Deviation of the measured cross-sectional profile from a spheric and an aspheric curve. The obtained profile was well fitted with an aspheric curve corresponding to a hyperboloid. The fitting parameters are shown in the text.

Fig. 5
Fig. 5

Optical system to measure intensity distribution at a focal point of the microlens.

Fig. 6
Fig. 6

Intensity profile at a focus of a fabricated microlens measured with He–Ne laser as a light source and a 2-D CCD as a detector.

Fig. 7
Fig. 7

Modulation transfer function curve derived with a measured intensity profile.

Fig. 8
Fig. 8

Images of a character formed with a microlens array fabricated with a CO2 laser. A photo was taken with a microscope as the object illuminated by white light. The diameter of each microlens is 170 μm, and the separation between the lens is 235 μm.

Fig. 9
Fig. 9

Laser irradiation time dependence of a microlens diameter of Corning 7059 glass for the CO2 laser power density of 11 W mm-2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

X - C 0 Φ 2 / [ 1 + ( 1 - ε   C 0 2 Φ 2 ) 1 / 2 ] +   Ai Φ i = 0 ,

Metrics