Abstract

The properties of a one-dimensional stacked-grid collimator can be specified by two dimensionless parameters. This is useful because a two-dimensional collimator can usually be described as two one-dimensional collimators. Plots are given that show normal-incidence transmission and FWHM angular response in terms of these parameters. Transmission is calculated with Fourier optics instead of the Fresnel–Kirchhoff integral.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. McGrath, “New technique for the design of an extreme ultraviolet collimator,” Rev. Sci. Instrum. 39, 1036–1038 (1968).
    [CrossRef]
  2. J. F. McGrath, M. Harwit, “A wide-spacing mechanical collimator,” Appl. Opt. 8, 837 (1969).
    [CrossRef] [PubMed]
  3. R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).
  4. G. Schmidtke, “Diffraction filters in XUV spectroscopy,” Appl. Opt. 9, 447–450 (1970).
    [CrossRef] [PubMed]
  5. C. A. Lindsey, “Effects of diffraction in multiple-grid telescopes for x-ray astronomy,” J. Opt. Soc. Am. 68, 1708–1715 (1978).
    [CrossRef]
  6. R. L. Blake, D. M. Barrus, E. Fenimore, “Diffraction effects on angular response of x-ray collimators,” Rev. Sci. Instrum. 47, 899–905 (1976).
    [CrossRef]
  7. R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
    [CrossRef]
  8. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chaps. 3 and 4.
  9. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 404 and App. III.
  10. G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant , eds. (Academic, Boston, 1992), Vol. 11, pp. 134–135, 144–145.
  11. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 365–371.
  12. A. Schuster, Introduction to the Theory of Optics (Longmans, Green, New York, 1924), p. 99.
  13. E. A. Hiedemann, M. A. Breazeale, “Secondary interference in the Fresnel zone of gratings,” J. Opt. Soc. Am. 49, 372–375 (1959).
    [CrossRef]

1994 (1)

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

1978 (1)

1976 (2)

R. L. Blake, D. M. Barrus, E. Fenimore, “Diffraction effects on angular response of x-ray collimators,” Rev. Sci. Instrum. 47, 899–905 (1976).
[CrossRef]

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

1970 (1)

1969 (1)

1968 (1)

J. F. McGrath, “New technique for the design of an extreme ultraviolet collimator,” Rev. Sci. Instrum. 39, 1036–1038 (1968).
[CrossRef]

1959 (1)

Barrus, D. M.

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

R. L. Blake, D. M. Barrus, E. Fenimore, “Diffraction effects on angular response of x-ray collimators,” Rev. Sci. Instrum. 47, 899–905 (1976).
[CrossRef]

Blake, R. L.

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

R. L. Blake, D. M. Barrus, E. Fenimore, “Diffraction effects on angular response of x-ray collimators,” Rev. Sci. Instrum. 47, 899–905 (1976).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 404 and App. III.

Breazeale, M. A.

Brubaker, W.

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

Dymond, K. F.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

Fenimore, E.

R. L. Blake, D. M. Barrus, E. Fenimore, “Diffraction effects on angular response of x-ray collimators,” Rev. Sci. Instrum. 47, 899–905 (1976).
[CrossRef]

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

Fritz, G. G.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chaps. 3 and 4.

Harwit, M.

Hiedemann, E. A.

Jenkins, F. A.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 365–371.

Lawrence, G. N.

G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant , eds. (Academic, Boston, 1992), Vol. 11, pp. 134–135, 144–145.

Lindsey, C. A.

McCoy, R. P.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

McGrath, J. F.

J. F. McGrath, M. Harwit, “A wide-spacing mechanical collimator,” Appl. Opt. 8, 837 (1969).
[CrossRef] [PubMed]

J. F. McGrath, “New technique for the design of an extreme ultraviolet collimator,” Rev. Sci. Instrum. 39, 1036–1038 (1968).
[CrossRef]

Meier, R. R.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

Puetter, R.

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

Regeon, P. A.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

Santos, P. F.

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

Schmidtke, G.

Schuster, A.

A. Schuster, Introduction to the Theory of Optics (Longmans, Green, New York, 1924), p. 99.

Thonnard, S. E.

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

White, H. E.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 365–371.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 404 and App. III.

Appl. Opt. (2)

J. Opt. Soc. Am. (2)

Opt. Eng. (1)

R. P. McCoy, K. F. Dymond, G. G. Fritz, S. E. Thonnard, R. R. Meier, P. A. Regeon, “Special Sensor Ultraviolet Limb Imager: an inonospheric and neutral density profiler for the Defense Meteorological Satellite Program satellites,” Opt. Eng. 33, 423–429 (1994).
[CrossRef]

Rev. Sci. Instrum. (2)

J. F. McGrath, “New technique for the design of an extreme ultraviolet collimator,” Rev. Sci. Instrum. 39, 1036–1038 (1968).
[CrossRef]

R. L. Blake, D. M. Barrus, E. Fenimore, “Diffraction effects on angular response of x-ray collimators,” Rev. Sci. Instrum. 47, 899–905 (1976).
[CrossRef]

Space Sci. Instrum. (1)

R. L. Blake, P. F. Santos, D. M. Barrus, W. Brubaker, E. Fenimore, R. Puetter, “Collimators for soft-x-ray measurements,” Space Sci. Instrum. 2, 171–196 (1976).

Other (5)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1988), Chaps. 3 and 4.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1970), p. 404 and App. III.

G. N. Lawrence, “Optical modeling,” in Applied Optics and Optical Engineering, R. R. Shannon, J. C. Wyant , eds. (Academic, Boston, 1992), Vol. 11, pp. 134–135, 144–145.

F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), pp. 365–371.

A. Schuster, Introduction to the Theory of Optics (Longmans, Green, New York, 1924), p. 99.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of a stacked-grid collimator indicating its geometrical optics properties. Apertures of width s have center-to-center spacing d. Grids are spaced along the z axis so that the minimum number is needed to block transmission of rays outside the desired FOV. Ray R 1 is incident on the collimator at angle θ. Rays near R 2 are blocked either by grid K or K - 1 and rays near R 3 by grid K - 1 or K - 2. Rays farther off axis than R 4 pass between the most closely spaced grids and are not, in principle, stopped by the collimator.

Fig. 2
Fig. 2

Normal-incidence transmission of light as a function of q for various values of r. The derivation of the analytic curve T(0) = r - 0.21 qr is given in the text.

Fig. 3
Fig. 3

Normalized FWHM as a function of q for various values of r.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

z k = Lr K - k ,   k = 1 , ,   K ,
FWHM G = 2   tan - 1 s 2 L s / L ,
i λ = d sin   θ i - sin   θ 0 ,
U x ,   z = exp j   2 π λ ( α 0 x + 1 - α 0 2   z ) ,
G x = 1   for   x   in   apertures = 0   for   x   in   obstructions .
A α λ ,   z K = FG K x F - 1 P z K - z K - 1     FG 2 x × F - 1 P z 2 - z 1 FG 1 x U x ,   z 1 ,
T 0 = I 0 s - 2 I 0 / 4 w / I 0 d = s / d - 0.21 λ L / d 2 = r - 0.21 qr .

Metrics