Abstract

The modeled performance of an Fe Boltzmann temperature lidar system is compared with existing Na narrow-band temperature techniques. The Fe Boltzmann technique employs mesospheric Fe as a fluorescence tracer and relies on the temperature dependence of the population difference of two closely spaced Fe transitions. The relative performance of the new technique is compared with an existing Na narrow-band temperature technique, and a link analysis is performed with measured data for both Na and Fe. It is shown that for currently available laser technology the two systems yield similar performance but the Fe system allows for the use of more broadband lasers.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Bills, C. S. Gardner, C.-Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
    [CrossRef]
  2. G. C. Papen, C. S. Gardner, W. M. Pfenninger, “Analysis of a potassium lidar system for upper-atmospheric wind-temperature measurements,” Appl. Opt. 34, 6950–6958 (1995).
    [CrossRef] [PubMed]
  3. U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
    [CrossRef]
  4. J. A. Gelbwachs, “Iron Boltzmann factor lidar: proposed new remote-sensing technique for mesospheric temperature,” Appl. Opt. 33, 7151–7156 (1994).
    [CrossRef] [PubMed]
  5. G. C. Papen, D. Treyer, “Comparison of an Fe Boltzmann lidar with a Na narrowband lidar,” in Proceedings of the 19th International Laser Radar Conference, NASA Spec. Publ. SP-1998-207671/PT1 (NASA, Washington, D.C., 1998), pp. 355–358.
  6. G. C. Papen, W. M. Pfenninger, D. M. Simonich, “Sensitivity analysis of Na narrowband wind–temperature lidar systems,” Appl. Opt. 34, 480–498 (1995).
    [CrossRef] [PubMed]
  7. J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities: iron through nickel,” J. Phys. Chem. Ref. Data 17, 25 (1988).
  8. T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitides,” J. Geophys. Res. 98, 16,875–16,886 (1993).
    [CrossRef]
  9. M. Bass, ed., Handbook of Optics: Fundamentals, Techniques, and Design (McGraw-Hill, New York, 1995), Chap. 44, p. 44-2.

1996 (1)

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

1995 (2)

1994 (1)

1993 (1)

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitides,” J. Geophys. Res. 98, 16,875–16,886 (1993).
[CrossRef]

1991 (1)

R. E. Bills, C. S. Gardner, C.-Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

1988 (1)

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities: iron through nickel,” J. Phys. Chem. Ref. Data 17, 25 (1988).

Bills, R. E.

R. E. Bills, C. S. Gardner, C.-Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

Fuhr, J. R.

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities: iron through nickel,” J. Phys. Chem. Ref. Data 17, 25 (1988).

Gardner, C. S.

G. C. Papen, C. S. Gardner, W. M. Pfenninger, “Analysis of a potassium lidar system for upper-atmospheric wind-temperature measurements,” Appl. Opt. 34, 6950–6958 (1995).
[CrossRef] [PubMed]

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitides,” J. Geophys. Res. 98, 16,875–16,886 (1993).
[CrossRef]

R. E. Bills, C. S. Gardner, C.-Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

Gelbwachs, J. A.

Hoffner, J.

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

Kane, T. J.

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitides,” J. Geophys. Res. 98, 16,875–16,886 (1993).
[CrossRef]

Martin, G. A.

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities: iron through nickel,” J. Phys. Chem. Ref. Data 17, 25 (1988).

Papen, G. C.

Pfenninger, W. M.

She, C.-Y.

R. E. Bills, C. S. Gardner, C.-Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

Simonich, D. M.

Treyer, D.

G. C. Papen, D. Treyer, “Comparison of an Fe Boltzmann lidar with a Na narrowband lidar,” in Proceedings of the 19th International Laser Radar Conference, NASA Spec. Publ. SP-1998-207671/PT1 (NASA, Washington, D.C., 1998), pp. 355–358.

von Zahn, U.

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

Wiese, W. L.

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities: iron through nickel,” J. Phys. Chem. Ref. Data 17, 25 (1988).

Appl. Opt. (3)

Geophys. Res. Lett. (1)

U. von Zahn, J. Hoffner, “Mesopause temperature profiling by potassium lidar,” Geophys. Res. Lett. 23, 141–144 (1996).
[CrossRef]

J. Geophys. Res. (1)

T. J. Kane, C. S. Gardner, “Structure and seasonal variability of the nighttime mesospheric Fe layer at midlatitides,” J. Geophys. Res. 98, 16,875–16,886 (1993).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

J. R. Fuhr, G. A. Martin, W. L. Wiese, “Atomic transition probabilities: iron through nickel,” J. Phys. Chem. Ref. Data 17, 25 (1988).

Opt. Eng. (1)

R. E. Bills, C. S. Gardner, C.-Y. She, “Narrowband lidar technique for sodium temperature and Doppler wind observations of the upper atmosphere,” Opt. Eng. 30, 13–21 (1991).
[CrossRef]

Other (2)

M. Bass, ed., Handbook of Optics: Fundamentals, Techniques, and Design (McGraw-Hill, New York, 1995), Chap. 44, p. 44-2.

G. C. Papen, D. Treyer, “Comparison of an Fe Boltzmann lidar with a Na narrowband lidar,” in Proceedings of the 19th International Laser Radar Conference, NASA Spec. Publ. SP-1998-207671/PT1 (NASA, Washington, D.C., 1998), pp. 355–358.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Resonance fluorescence backscatter cross section of the Na D 2 transition as a function of frequency for several temperatures. A temperature increase causes the ratio R T = N f c /N f a to increase. The Na D 2 center wavelength is λNa = 589.15826 nm.

Fig. 2
Fig. 2

Resonance fluorescence backscatter cross sections of the Fe 372- and Fe 374-nm transitions as a function of frequency. The center wavelengths are λ1 = 371.993 nm and λ2 = 373.713 nm.

Fig. 3
Fig. 3

Sensitivity of the ratio R T for the Na narrow-band technique and the Fe Boltzmann technique. System parameters are listed in Table 2.

Fig. 4
Fig. 4

Required number of return counts for 1 K temperature accuracy for the Na system and the Fe system.

Tables (2)

Tables Icon

Table 1 Spectroscopic Parameters of the 372- and 374-nm Transitionsa

Tables Icon

Table 2 System Parameters Used in the Simulation of the Current Two-Frequency Na Narrow-Band System and the New Fe Boltzmann System

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N t z ,   t = C z 2   σ eff f ,   T ,   v R ,   g ,   I ρ z ,   t + N B ,
C = η   T a 2 P l Δ z Δ t hc / λ A R 4 π .
R T z ,   t = N f c z ,   t N f a z ,   t = σ eff f c ,   T ,   v R ,   g ρ z ,   t σ eff f a ,   T ,   v R ,   g ρ z ,   t ,
S T = R T / T R T .
Δ T 2 = 1 S T 2 Δ R T R T 2 .
Δ R T = Δ N f c R T N f c + Δ N f a R T N f a = R T Δ N f c N f c - Δ N f a N f a .
Δ R T R T 2 = 1 N f a 1 + 1 R T ,
Δ T = 1 S T 1 + 1 / R T N f a 1 / 2 = Q T N f a 1 / 2 .
R T = N 374 N 372 = σ 2 λ 2 g 2 σ 1 λ 1 g 1 exp - Δ E kT = C 1   exp - C 2 T .
σ eff f ,   T ,   σ l = 1 2 π σ e 2 1 / 2 exp - f - f i 2 2 σ e 2 ,
S T = C 2 T 2 600 T 2
Q T = T 2 C 2 1 + 1 C 1 exp C 2 T 1 / 2 .
r = Δ t Fe T ,   Δ T ,   z Δ t Na T ,   Δ T ,   z .
Δ t = 2   N T ,   Δ T z 2 σ eff T ρ z 1 η hc / λ T a 2 P l Δ z 4 π A R .
r pk = Q Na 2 T Q Fe 2 T z pk , Na 2 z pk , Fe 2 σ eff , Fe T σ eff , Na T ρ pk , Fe ρ pk , Na η Fe η Na λ Fe λ Na × T a , Fe 2 T a , Na 2 P l , Fe P l , Na A R , Fe A R , Na .
ρ z = C ρ 2 π   σ ρ exp - z - z pk 2 2 σ ρ 2 .

Metrics