Abstract

A smoothly tunable, narrow-linewidth, cw, 32-mW, 2.066-μm Ho:YLF laser was constructed and used for the first time in preliminary spectroscopic measurements of atmospheric CO2 and H2O. The laser was constructed with a 4.5-mm-long, TE-cooled, codoped 5% Tm and 0.5% Ho yttrium lithium fluoride crystal (cut at Brewster’s angle) pumped by an Ar+-pumped 500-mW Ti:sapphire laser operating at 792 nm. Intracavity etalons were used to reduce the laser linewidth to approximately 0.025 cm-1 (0.75 GHz), and the laser wavelength was continuously and smoothly tunable over approximately 6 cm-1 (180 GHz). The Ho:YLF laser was used to perform spectroscopic measurements on molecular CO2 in a laboratory absorption cell and to measure the concentration of CO2 and water vapor in the atmosphere with an initial accuracy of approximately 5–10%. The measurement uncertainty was found to be due to several noise sources, including the effect of asymmetric intensity of the laser modes within the laser linewidth, fluctuations caused by atmospheric turbulence and laser beam/target movement, and background spectral shifts.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Storm, “Holmium YLF amplifier performance and the prospects for multi-joule energies using diode-laser pumping,” IEEE J. Quantum Electron. 29, 440–451 (1993).
    [CrossRef]
  2. E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
    [CrossRef]
  3. American National Standard for Safe Use of Lasers. ANSI Z136.1-1993 (Laser Institute of America, Orlando, Fla., 1993).
  4. G. Armagan, A. M. Buoncristiani, A. T. Inge, B. Di Bartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 222–226.
  5. R. A. Horne, The Chemistry of Our Environment (Wiley, New York, 1978), p. 651.
  6. C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
    [CrossRef]
  7. L. S. Rothman, “Infrared energy levels and intensities of carbon dioxide: Part 3,” Appl. Opt. 25, 1795–1816 (1986).
    [CrossRef] [PubMed]
  8. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
    [CrossRef]
  9. S. W. Henderson, C. P. Hale, “Tunable single-longitudinal mode diode laser pumped Tm:Ho:YAG laser,” Appl. Opt. 29, 1716–1718 (1990).
    [CrossRef] [PubMed]
  10. K. O. White, W. R. Watkins, S. A. Schleusener, “Holmium 2.06 mm laser spectral characteristics and absorption by CO2 gas,” Appl. Opt. 14, 16–18 (1975).
    [CrossRef] [PubMed]
  11. P. S. Gillespie, R. L. Armstrong, K. O. White, “Spectral characteristics and atmospheric CO2 absorption of the Ho:YLF laser at 2.05 μm,” Appl. Opt. 15, 865–866 (1976).
    [CrossRef] [PubMed]
  12. A. Erbil, H. P. Jenssen, “Tunable Ho3+:YLF laser at 2.06 μm,” Appl. Opt. 19, 1729–1730 (1980).
    [CrossRef] [PubMed]
  13. A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.
  14. H. Hemmati, “2.07-μm cw diode-laser-pumped Tm, Ho:YLiF4 room-temperature laser,” Opt. Lett. 14, 435–437 (1989).
    [CrossRef] [PubMed]
  15. B. T. McGuckin, R. T. Menzies, “Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 μm,” IEEE J. Quantum Electron. 28, 1025–1028 (1992).
    [CrossRef]
  16. B. T. McGuckin, R. T. Menzies, C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 23, 2082–2084 (1993).
    [CrossRef]
  17. R. T. Menzies, H. Hemmati, C. Esproles, “Tunable Th,Ho:YLF laser for wideband Doppler compensation in heterodyne optical receivers, in Laser Radar Technology and Applications III, G. W. Kamermon, ed., Proc. SPIE3380, Paper 3380-15 (1998).
  18. G. J. Koch, J. P. Deyst, M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18, 1235–1237 (1993).
  19. T. M. Taczak, “Development of a tunable, narrow linewidth 2.066 μm Ho,Tm:YLF laser for open-path remote sensing of atmospheric CO2 and water vapor,” Ph.D. dissertation (Department of Physics, University of South Florida, Tampa, Fla., 1997).
  20. D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
    [CrossRef] [PubMed]
  21. R. C. Weast, M. J. Astle, W. H. Beyer, eds., CRC Handbook of Chemistry and Physics, 64th ed. (Boca Raton, Fla., 1984), p. 338.
  22. K. Carder, Department of Marine Science, University of South Florida, Tampa, Fla. (personal communication, 1996).

1993 (3)

M. Storm, “Holmium YLF amplifier performance and the prospects for multi-joule energies using diode-laser pumping,” IEEE J. Quantum Electron. 29, 440–451 (1993).
[CrossRef]

B. T. McGuckin, R. T. Menzies, C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 23, 2082–2084 (1993).
[CrossRef]

G. J. Koch, J. P. Deyst, M. E. Storm, “Single-frequency lasing of monolithic Ho,Tm:YLF,” Opt. Lett. 18, 1235–1237 (1993).

1992 (2)

B. T. McGuckin, R. T. Menzies, “Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 μm,” IEEE J. Quantum Electron. 28, 1025–1028 (1992).
[CrossRef]

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

1990 (1)

1989 (1)

1987 (1)

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

1986 (1)

1980 (1)

1976 (1)

1975 (1)

1971 (1)

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

Armagan, G.

G. Armagan, A. M. Buoncristiani, A. T. Inge, B. Di Bartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 222–226.

Armstrong, R. L.

Bacastow, R.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Buoncristiani, A. M.

G. Armagan, A. M. Buoncristiani, A. T. Inge, B. Di Bartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 222–226.

Camypeyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Carder, K.

K. Carder, Department of Marine Science, University of South Florida, Tampa, Fla. (personal communication, 1996).

Carter, A.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Chicklis, E. P.

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

Devi, V. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Deyst, J. P.

Di Bartolo, B.

G. Armagan, A. M. Buoncristiani, A. T. Inge, B. Di Bartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 222–226.

Di Lieto, A.

A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.

Erbil, A.

Esproles, C.

B. T. McGuckin, R. T. Menzies, C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 23, 2082–2084 (1993).
[CrossRef]

R. T. Menzies, H. Hemmati, C. Esproles, “Tunable Th,Ho:YLF laser for wideband Doppler compensation in heterodyne optical receivers, in Laser Radar Technology and Applications III, G. W. Kamermon, ed., Proc. SPIE3380, Paper 3380-15 (1998).

Flaud, J. M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Folweiler, R. C.

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

Gabbe, D. R.

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Gillespie, P. S.

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Hale, C. P.

Heimann, M.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Hemmati, H.

H. Hemmati, “2.07-μm cw diode-laser-pumped Tm, Ho:YLiF4 room-temperature laser,” Opt. Lett. 14, 435–437 (1989).
[CrossRef] [PubMed]

R. T. Menzies, H. Hemmati, C. Esproles, “Tunable Th,Ho:YLF laser for wideband Doppler compensation in heterodyne optical receivers, in Laser Radar Technology and Applications III, G. W. Kamermon, ed., Proc. SPIE3380, Paper 3380-15 (1998).

Henderson, S. W.

Horne, R. A.

R. A. Horne, The Chemistry of Our Environment (Wiley, New York, 1978), p. 651.

Inge, A. T.

G. Armagan, A. M. Buoncristiani, A. T. Inge, B. Di Bartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 222–226.

Jenssen, H. P.

A. Erbil, H. P. Jenssen, “Tunable Ho3+:YLF laser at 2.06 μm,” Appl. Opt. 19, 1729–1730 (1980).
[CrossRef] [PubMed]

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.

Keeling, C.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Killinger, D. K.

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

Koch, G. J.

Linz, A.

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

McGuckin, B. T.

B. T. McGuckin, R. T. Menzies, C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 23, 2082–2084 (1993).
[CrossRef]

B. T. McGuckin, R. T. Menzies, “Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 μm,” IEEE J. Quantum Electron. 28, 1025–1028 (1992).
[CrossRef]

Menyuk, N.

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

Menzies, R. T.

B. T. McGuckin, R. T. Menzies, C. Esproles, “Tunable frequency stabilized diode-laser-pumped Tm, Ho:YLiF4 laser at room temperature,” Appl. Opt. 23, 2082–2084 (1993).
[CrossRef]

B. T. McGuckin, R. T. Menzies, “Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 μm,” IEEE J. Quantum Electron. 28, 1025–1028 (1992).
[CrossRef]

R. T. Menzies, H. Hemmati, C. Esproles, “Tunable Th,Ho:YLF laser for wideband Doppler compensation in heterodyne optical receivers, in Laser Radar Technology and Applications III, G. W. Kamermon, ed., Proc. SPIE3380, Paper 3380-15 (1998).

Minguzzi, P.

A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.

Mook, W.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Naiman, C. S.

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

Neri, A.

A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Piper, S.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Pozzi, F.

A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Roeloffzen, H.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

L. S. Rothman, “Infrared energy levels and intensities of carbon dioxide: Part 3,” Appl. Opt. 25, 1795–1816 (1986).
[CrossRef] [PubMed]

Schleusener, S. A.

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Storm, M.

M. Storm, “Holmium YLF amplifier performance and the prospects for multi-joule energies using diode-laser pumping,” IEEE J. Quantum Electron. 29, 440–451 (1993).
[CrossRef]

Storm, M. E.

Taczak, T. M.

T. M. Taczak, “Development of a tunable, narrow linewidth 2.066 μm Ho,Tm:YLF laser for open-path remote sensing of atmospheric CO2 and water vapor,” Ph.D. dissertation (Department of Physics, University of South Florida, Tampa, Fla., 1997).

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Tonelli, M.

A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Watkins, W. R.

White, K. O.

Whorf, T.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

E. P. Chicklis, C. S. Naiman, R. C. Folweiler, D. R. Gabbe, H. P. Jenssen, A. Linz, “High efficiency room-temperature 2.06 μm laser using sensitized Ho3+:YLF,” Appl. Phys. Lett. 19, 119–121 (1971).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Storm, “Holmium YLF amplifier performance and the prospects for multi-joule energies using diode-laser pumping,” IEEE J. Quantum Electron. 29, 440–451 (1993).
[CrossRef]

B. T. McGuckin, R. T. Menzies, “Efficient CW diode-pumped Tm, Ho:YLF laser with tunability near 2.067 μm,” IEEE J. Quantum Electron. 28, 1025–1028 (1992).
[CrossRef]

J. Quantum Spectros. Rad. Trans. (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camypeyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The HITRAN molecular database: editions 1991 and 1992,” J. Quantum Spectros. Rad. Trans. 48, 469–507 (1992).
[CrossRef]

Opt. Lett. (2)

Science (1)

D. K. Killinger, N. Menyuk, “Laser remote sensing of the atmosphere,” Science 235, 37–45 (1987).
[CrossRef] [PubMed]

Other (9)

R. C. Weast, M. J. Astle, W. H. Beyer, eds., CRC Handbook of Chemistry and Physics, 64th ed. (Boca Raton, Fla., 1984), p. 338.

K. Carder, Department of Marine Science, University of South Florida, Tampa, Fla. (personal communication, 1996).

T. M. Taczak, “Development of a tunable, narrow linewidth 2.066 μm Ho,Tm:YLF laser for open-path remote sensing of atmospheric CO2 and water vapor,” Ph.D. dissertation (Department of Physics, University of South Florida, Tampa, Fla., 1997).

R. T. Menzies, H. Hemmati, C. Esproles, “Tunable Th,Ho:YLF laser for wideband Doppler compensation in heterodyne optical receivers, in Laser Radar Technology and Applications III, G. W. Kamermon, ed., Proc. SPIE3380, Paper 3380-15 (1998).

American National Standard for Safe Use of Lasers. ANSI Z136.1-1993 (Laser Institute of America, Orlando, Fla., 1993).

G. Armagan, A. M. Buoncristiani, A. T. Inge, B. Di Bartolo, “Comparison of spectroscopic properties of Tm and Ho in YAG and YLF crystals,” in Advanced Solid-State Lasers, G. Dube, L. Chase, eds., Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 222–226.

R. A. Horne, The Chemistry of Our Environment (Wiley, New York, 1978), p. 651.

C. Keeling, R. Bacastow, A. Carter, S. Piper, T. Whorf, M. Heimann, W. Mook, H. Roeloffzen, “A three dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data,” in Aspects of Climate Variability in the Pacific and Western Americas, Vol. 55 of Geophysical Monographs (American Geophysical Union, Washington, D.C., 1989), pp. 165–236.
[CrossRef]

A. Di Lieto, A. Neri, P. Minguzzi, F. Pozzi, M. Tonelli, H. P. Jenssen, “Characterization and spectroscopic applications of a high-efficiency Ho:YLF laser,” in Advanced Solid-State Lasers, Vol. 10 of OSA 1991 Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 150–154.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (21)

Fig. 1
Fig. 1

Calculated transmission of the atmosphere near 2.067 μm for a path length of 1000 m using the HITRAN database. The coarse tuning range for a high-gain (flash-lamp-pumped) Ho:YLF laser is also shown and covers several CO2 and water-vapor absorption lines.

Fig. 2
Fig. 2

Schematic of the quasi-tunable, flat-parallel Ho:YLF laser.

Fig. 3
Fig. 3

Schematic of the Ho:YLF laser and laboratory spectroscopic diagnostic equipment.

Fig. 4
Fig. 4

Output signal from the scanning Fabry–Perot showing single-mode operation of a flat-parallel Ho:YLF laser when the laser is not tuned in wavelength.

Fig. 5
Fig. 5

Schematic of a Brewster-cut Ho:YLF laser crystal and laser cavity showing axis and crystal orientation and dimensions.

Fig. 6
Fig. 6

Plot of the output power from the Brewster-cut Ho:YLF laser (with tuning etalons in the cavity) as a function of Ti:S laser pump power for different crystal temperatures.

Fig. 7
Fig. 7

Typical output signal from the scanning Fabry–Perot interferometer for Brewster-cut Ho:YLF laser showing operation on two longitudinal modes.

Fig. 8
Fig. 8

Relative output power of the Brewster-cut Ho laser as a function of wavelength measured as the laser-tuning etalons were angle tuned from -5° to +5°.

Fig. 9
Fig. 9

Calculated wavelength for the etalon modes and laser cavity modes as a function of etalon angle for a 1-mm-thick uncoated glass etalon.

Fig. 10
Fig. 10

Measured relative intensity as a function of position across the Ho:YLF laser beam profile.

Fig. 11
Fig. 11

Schematic of the Brewster-cut Ho:YLF laser, spectroscopic diagnostics, and laboratory CO2 absorption cell.

Fig. 12
Fig. 12

Log–log plot of measured PbS detector response as a function of incident Ho:YLF laser power. The curve shows the saturation effects at power levels greater than approximately 0.5 mW.

Fig. 13
Fig. 13

Transmission spectrum of CO2 in a laboratory absorption cell (1-atm, 0.31-m path length) obtained as the Brewster-cut Ho:YLF laser was scanned in wavelength. The laser cavity etalon was scanned in angle from -5° to +5°, which is why the spectrum has a partial mirror image about the center of the scan. The upper plot is the transmission through a fixed Fabry–Perot as a function of time (i.e., wavelength) and serves as a relative frequency scale.

Fig. 14
Fig. 14

Expanded transmission spectrum of the P(18) CO2 absorption line and background spectrum obtained with the laboratory absorption cell. The measured transmittance was approximately 55% and the measured FWHM linewidth was approximately 0.21 cm-1.

Fig. 15
Fig. 15

Plot of measured P(18) CO2 absorption line and a theoretical pressure-broadened line-shape curve fitted to the data. The HITRAN-calculated transmission spectrum for this line is also shown for reference. There is approximately an 8% difference between the deduced molecular line strength S and the HITRAN value. In addition, a small asymmetry in the measured line shape can be seen between the fitted curve and the data.

Fig. 16
Fig. 16

Schematic of the laser mode intensity model used to simulate the effect of multiple laser modes with asymmetrical intensities on the measured spectral absorption profiles.

Fig. 17
Fig. 17

Modeled transmission spectra of a CO2 absorption line using three longitudinal laser modes with relative intensities of I 1 = 0.05, I 2 = 0.6, and I 3 = 0.35 spaced apart by Δν = 0.025 cm-1. The resultant absorption spectral line shows an asymmetry that is due to the asymmetry in the intensity of the laser modes and a reduced line strength S value.

Fig. 18
Fig. 18

High-resolution HITRAN-calculated transmission spectrum near 4839 cm-1 through a 270-m path in the atmosphere (U.S. Tropical Model). The tuning range of the Brewster-cut Ho:YLF laser is also shown.

Fig. 19
Fig. 19

Schematic of the tunable Ho:YLF long-path remote-sensing DOAS experimental setup used to measure atmospheric CO2 and water vapor.

Fig. 20
Fig. 20

Atmospheric DOAS measurements of CO2 and water vapor obtained using a retroreflector corner-cube target. The Ho:YLF laser wavelength was scanned near 4839 cm-1, and the round-trip path length was 270 m. The deduced concentration of CO2 was approximately 320 parts per million and the concentration of water vapor was approximately 2.1 × 10-2 atm.

Fig. 21
Fig. 21

Atmospheric DOAS measurements of the P(18) CO2 line obtained with 3M retroreflecting tape as the target; path length of 270 m, T = 26 °C, 54% relative humidity. The deduced concentration of CO2 was approximately 420 ppm with an accuracy of approximately 8%.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

L = L + d n - 1 + d n - 1 θ 2 / 2 n ,
ν ¯ c = m / 2 L ,
ν ¯ e = m / 2 nd   cos   θ t ,
ν ¯ e = 1 / λ 1 + 1 / 2 θ / n 2 = ν ¯ o + θ 2 / 2 λ n ,
T ν ,   L = exp - S   γ P π ν - ν o 2 + γ P 2   NP a L ,
N = N L 296 / T ,
% T =   I ti /   I ii
N = ln T atm ln T cell L cell L atm γ atm γ cell   N cell .
γ atm = g 296   K T n ,

Metrics