Abstract

Stimulated anti-Stokes Raman scattering in molecular hydrogen allows for the generation of continuously tunable narrow-bandwidth radiation down to the transmission limit of vacuum ultraviolet (VUV) window materials. Simultaneous irradiation of UV-pump radiation (in this application, dye laser radiation of wavelength λ = 372 nm) and of radiation whose wavelength corresponds to the first Stokes component allows a considerable increase in efficiency—by nearly 2 orders of magnitude in the far VUV. The additional Stokes radiation is generated in a simple manner during the passage of the unfocused pump radiation through a high-pressure Raman cell that precedes the VUV Raman cell.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Bogen, Ph. Mertens, E. Pasch, H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
    [CrossRef]
  2. H. F. Döbele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
    [CrossRef]
  3. V. Schulz-von der Gathen, T. Bornemann, V. Kornas, H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
    [CrossRef]
  4. S. Wada, H. Moriwaka, A. Nakamura, H. Tashiro, “Injection seeding for the enhancement of higher-order anti-Stokes stimulated Raman scattering,” Opt. Lett. 20, 848–850 (1995).
    [CrossRef] [PubMed]
  5. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
  6. J. F. Reintjes, “Coherent ultraviolet and vacuum ultraviolet sources,” in Laser Handbook, M. Bass, M. L. Stitch, eds. (North-Holland, Amsterdam, 1985), Vol. 5.
  7. W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
    [CrossRef]
  8. J. P. Partanen, M. J. Shaw, “High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications,” J. Opt. Soc. Am. B 3, 1374–1389 (1986).
    [CrossRef]
  9. D. J. Brink, D. Proch, “Angular distribution of high-order anti-Stokes stimulated Raman scattering in hydrogen,” J. Opt. Soc. Am. 73, 23–25 (1983).
    [CrossRef]
  10. V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).
  11. G. M. Krochik, Yu. G. Khronopulo, “Conversion of radiation frequency in four-wave parametric resonance processes based on stimulated Raman scattering,” Sov. J. Quantum Electron. 5, 917–921 (1976).
  12. M. Spaan, A. Goehlich, V. Schulz-von der Gathen, H. F. Döbele, “Experimental tests of a novel Raman cell for vacuum ultraviolet generation to below Lyman-α,” Appl. Opt. 33, 3865–3870 (1994).
    [CrossRef] [PubMed]
  13. W. L. Glab, J. P. Hessler, “Frequency shift and asymmetric line shape of the fourth anti-Stokes component from a hydrogen Raman shifter,” Appl. Opt. 27, 5123–5126 (1988).
    [CrossRef] [PubMed]
  14. W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A. 33, 3113–3123 (1986).
    [CrossRef] [PubMed]
  15. G. I. Chashchina, E. Ya. Shreider, “Determination of hydrogen refraction index in the vacuum spectral range,” Opt. Spektrosk. 66, 274–275 (1989).
  16. T. Larsen, “Gase und Dämpfe,” in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol. 2, Eigenschaften der Materie in ihren Aggregatzuständen, Part 8, Optische Konstanten, 6th ed., K.-H. Hellwege, A. M. Hellwege, eds. (Sprinter-Verlag, Berlin, 1962), Table 5, p. 885.
  17. H. G. Jerrard, D. B. McNeill, Dictionary of Scientific Units (Chapman & Hall, London, 1986).

1995 (2)

H. F. Döbele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
[CrossRef]

S. Wada, H. Moriwaka, A. Nakamura, H. Tashiro, “Injection seeding for the enhancement of higher-order anti-Stokes stimulated Raman scattering,” Opt. Lett. 20, 848–850 (1995).
[CrossRef] [PubMed]

1994 (1)

1992 (1)

1990 (1)

V. Schulz-von der Gathen, T. Bornemann, V. Kornas, H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[CrossRef]

1989 (1)

G. I. Chashchina, E. Ya. Shreider, “Determination of hydrogen refraction index in the vacuum spectral range,” Opt. Spektrosk. 66, 274–275 (1989).

1988 (1)

1986 (2)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A. 33, 3113–3123 (1986).
[CrossRef] [PubMed]

J. P. Partanen, M. J. Shaw, “High-power forward Raman amplifiers employing low-pressure gases in light guides. I. Theory and applications,” J. Opt. Soc. Am. B 3, 1374–1389 (1986).
[CrossRef]

1983 (1)

1979 (1)

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[CrossRef]

1976 (2)

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

G. M. Krochik, Yu. G. Khronopulo, “Conversion of radiation frequency in four-wave parametric resonance processes based on stimulated Raman scattering,” Sov. J. Quantum Electron. 5, 917–921 (1976).

Bischel, W. K.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A. 33, 3113–3123 (1986).
[CrossRef] [PubMed]

Bogen, P.

Bornemann, T.

V. Schulz-von der Gathen, T. Bornemann, V. Kornas, H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[CrossRef]

Brink, D. J.

Butylkin, V. S.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

Byer, R. L.

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[CrossRef]

Chashchina, G. I.

G. I. Chashchina, E. Ya. Shreider, “Determination of hydrogen refraction index in the vacuum spectral range,” Opt. Spektrosk. 66, 274–275 (1989).

Döbele, H. F.

H. F. Döbele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
[CrossRef]

M. Spaan, A. Goehlich, V. Schulz-von der Gathen, H. F. Döbele, “Experimental tests of a novel Raman cell for vacuum ultraviolet generation to below Lyman-α,” Appl. Opt. 33, 3865–3870 (1994).
[CrossRef] [PubMed]

P. Bogen, Ph. Mertens, E. Pasch, H. F. Döbele, “Detection of atomic oxygen and hydrogen in the vacuum UV using a frequency-doubled, Raman-shifted dye laser,” J. Opt. Soc. Am. B 9, 2137–2141 (1992).
[CrossRef]

V. Schulz-von der Gathen, T. Bornemann, V. Kornas, H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[CrossRef]

Dyer, M. J.

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A. 33, 3113–3123 (1986).
[CrossRef] [PubMed]

Fisher, P. S.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

Glab, W. L.

Goehlich, A.

Hessler, J. P.

Jerrard, H. G.

H. G. Jerrard, D. B. McNeill, Dictionary of Scientific Units (Chapman & Hall, London, 1986).

Khronopulo, Yu. G.

G. M. Krochik, Yu. G. Khronopulo, “Conversion of radiation frequency in four-wave parametric resonance processes based on stimulated Raman scattering,” Sov. J. Quantum Electron. 5, 917–921 (1976).

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

Kornas, V.

V. Schulz-von der Gathen, T. Bornemann, V. Kornas, H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[CrossRef]

Krochik, G. M.

G. M. Krochik, Yu. G. Khronopulo, “Conversion of radiation frequency in four-wave parametric resonance processes based on stimulated Raman scattering,” Sov. J. Quantum Electron. 5, 917–921 (1976).

Larsen, T.

T. Larsen, “Gase und Dämpfe,” in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol. 2, Eigenschaften der Materie in ihren Aggregatzuständen, Part 8, Optische Konstanten, 6th ed., K.-H. Hellwege, A. M. Hellwege, eds. (Sprinter-Verlag, Berlin, 1962), Table 5, p. 885.

McNeill, D. B.

H. G. Jerrard, D. B. McNeill, Dictionary of Scientific Units (Chapman & Hall, London, 1986).

Mertens, Ph.

Moriwaka, H.

Nakamura, A.

Park, Y. K.

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[CrossRef]

Partanen, J. P.

Pasch, E.

Proch, D.

Protasov, V. P.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

Reintjes, J. F.

J. F. Reintjes, “Coherent ultraviolet and vacuum ultraviolet sources,” in Laser Handbook, M. Bass, M. L. Stitch, eds. (North-Holland, Amsterdam, 1985), Vol. 5.

Schulz-von der Gathen, V.

M. Spaan, A. Goehlich, V. Schulz-von der Gathen, H. F. Döbele, “Experimental tests of a novel Raman cell for vacuum ultraviolet generation to below Lyman-α,” Appl. Opt. 33, 3865–3870 (1994).
[CrossRef] [PubMed]

V. Schulz-von der Gathen, T. Bornemann, V. Kornas, H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[CrossRef]

Shalyaer, M. F.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

Shaw, M. J.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

Shreider, E. Ya.

G. I. Chashchina, E. Ya. Shreider, “Determination of hydrogen refraction index in the vacuum spectral range,” Opt. Spektrosk. 66, 274–275 (1989).

Spaan, M.

Tashiro, H.

Trutna, W. R.

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[CrossRef]

Venkin, V. G.

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

Wada, S.

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

V. Schulz-von der Gathen, T. Bornemann, V. Kornas, H. F. Döbele, “VUV generation by high-order CARS,” IEEE J. Quantum Electron. 26, 739–743 (1990).
[CrossRef]

W. R. Trutna, Y. K. Park, R. L. Byer, “The dependence of Raman gain on pump laser bandwidth,” IEEE J. Quantum Electron. QE-15, 648–655 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Opt. Lett. (1)

Opt. Spektrosk. (1)

G. I. Chashchina, E. Ya. Shreider, “Determination of hydrogen refraction index in the vacuum spectral range,” Opt. Spektrosk. 66, 274–275 (1989).

Phys. Rev. A. (1)

W. K. Bischel, M. J. Dyer, “Temperature dependence of the Raman linewidth and line shift for the Q(1) and Q(0) transitions in normal and para-H2,” Phys. Rev. A. 33, 3113–3123 (1986).
[CrossRef] [PubMed]

Plasma Sources Sci. Technol. (1)

H. F. Döbele, “Generation of coherent VUV radiation and its application to plasma diagnostics,” Plasma Sources Sci. Technol. 4, 224–233 (1995).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. M. Krochik, Yu. G. Khronopulo, “Conversion of radiation frequency in four-wave parametric resonance processes based on stimulated Raman scattering,” Sov. J. Quantum Electron. 5, 917–921 (1976).

Sov. Phys. JETP (1)

V. S. Butylkin, V. G. Venkin, V. P. Protasov, P. S. Fisher, Yu. G. Khronopulo, M. F. Shalyaer, “Effect of phase locking on the dynamics of the anti-Stokes component of stimulated Raman scattering,” Sov. Phys. JETP 43, 430–435 (1976).

Other (4)

T. Larsen, “Gase und Dämpfe,” in Landolt-Börnstein, Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, Vol. 2, Eigenschaften der Materie in ihren Aggregatzuständen, Part 8, Optische Konstanten, 6th ed., K.-H. Hellwege, A. M. Hellwege, eds. (Sprinter-Verlag, Berlin, 1962), Table 5, p. 885.

H. G. Jerrard, D. B. McNeill, Dictionary of Scientific Units (Chapman & Hall, London, 1986).

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).

J. F. Reintjes, “Coherent ultraviolet and vacuum ultraviolet sources,” in Laser Handbook, M. Bass, M. L. Stitch, eds. (North-Holland, Amsterdam, 1985), Vol. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated Stokes conversion as a function of the gain coefficient for various values of the seeding intensity according to Eq. (10).

Fig. 2
Fig. 2

(a) VUV Raman cell, (b) experimental setup.

Fig. 3
Fig. 3

Energies of the Stokes and anti-Stokes components (no Stokes seeding).

Fig. 4
Fig. 4

Calculated phase mismatch for anti-Stokes components.

Fig. 5
Fig. 5

First Stokes energy as a function of H2 pressure in the VUV Raman cell for various seeding energies with the fitted curves according to Eq. (10), as mentioned in the text. In this case and in the figures below that refer to the VUV Raman cell the density is determined by the pressure and the temperature of T = 77 K at the focus position.

Fig. 6
Fig. 6

Energies of the first and second Stokes components versus H2 pressure in the Stokes cell. The solid curves were drawn to guide the eye.

Fig. 7
Fig. 7

VUV energy of the (a) 7th, (b) 10th, and (c) 13th anti-Stokes components without and with Stokes seeding.

Fig. 8
Fig. 8

VUV energies in high anti-Stokes orders without and with Stokes seeding. The solid curves were drawn to guide the eye.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

k 1 S = k L - k υ ,     ν 1 S = ν L - ( ν b ν a ) ν υ .
k 1 AS = k L - k 1 S + k L ,     ν 1 AS = 2 ν L - ν 1 S = ν L + ν υ .
k j = 2 π ν j n j / c ,
k n AS = k L + k n - 1 AS - k 1 S , ν n AS = ν L - ν 1 S + ν n - 1 AS = ν L + n ν υ ,
k n S = k n - 1 S - k υ ,     ν n S = ν n - 1 S - ν υ ,
k n S = k 1 S + k n - 1 S - k L , ν n S = ν 1 S + ν n - 1 S - ν L = ν L - n ν υ ,
I L z = - ω L ω S   γ I S I L ,
I S z = γ I L I S ,
γ ν = ρ n λ S 2 h ν S   s ν σ Ω .
I S z = I 0 I S 0 I L 0 exp γ I 0 z 1 + ω L ω S I S 0 I L 0 exp γ I 0 z - 1 ,
γ ν = 2 ρ n λ S 2 h ν S π Δ ν R σ Ω
Δ ν R = A / ρ n + B ρ n
A = 107 ± 20   MHz × amagat , B = 41.5 ± 0.6 MHz / amagat .
γ     ρ n / A / ρ n + B ρ n .

Metrics