Abstract

The development of a model for 2-μm laser operation in Tm,Ho:YAG and YLF crystals pumped in the near infrared is reported. This model, based on a simplified spectroscopic scheme, is fitted to a set of characterization experiments by means of three adjustable parameters. Results show that the excited-state populations are predicted with a relative accuracy of approximately 10% for a large range of pump levels. Using this model, we calculate the extractable energy on short-laser-pulse interactions for the two materials under different operation conditions. We study the sensitivity to pump duration and the optimization of dopant concentrations. We investigate the improvement of the extractable-energy efficiency with multiple-pulse operation. For double-pulse operation the improvement is approximately a factor of 1.5 and leads to overall extractable-energy efficiencies of 16% in YAG and 15% in YLF for an absorbed pump energy of 10 J cm-3.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
    [CrossRef]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [CrossRef]
  3. C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1996), pp. 235–238.
  4. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. Harrell Klein, P. A. Robinson, “Coherent lidar airborne wind sensor. II. Flight test at 2 and 10 μm,” Appl. Opt. 35, 7117–7127 (1996).
  5. J. B. Ghibaudo, J. Y. Labandibar, A. Marini, “Water vapour and wind measurements by a two micron space lidar,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 7–10.
  6. F. Amzajerdian, M. J. Kavaya, “Development of solid state coherent lidars for global wind measurements,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 15–17.
  7. J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.
  8. T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988).
    [CrossRef]
  9. G. Rustad, K. Stenerson, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
    [CrossRef]
  10. R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
    [CrossRef]
  11. N. P. Barnes, W. J. Rodriguez, B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13, 2872–2882 (1996).
    [CrossRef]
  12. G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).
  13. G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.
  14. G. Hansson, A. Callenas, C. Nelsson, “Upconversion studies in laser diode pumped Tm,Ho:YLiF4,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 446–449.
  15. L. B. Shaw, R. S. F. Chang, N. Djeu, “Measurement of up-conversion probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
    [CrossRef]
  16. B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).
  17. A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989).
    [CrossRef]
  18. A. A. Nikitichev, “Temperature dependence of the gain in Y3Al5O12:Cr3+:Tm3+:Ho3+,” Sov. J. Quantum Electron. 18, 918–919 (1988).
    [CrossRef]
  19. G. Armagan, A. M. Buoncristiani, B. Di Bartolo, “Energy transfer and thermalization in YAG:Tm,Ho,” J. Lumin. 48&49, 171–174 (1991).
  20. G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.
  21. M. Falconieri, G. Salvetti, “Pumping-laser-fluence dependence of the time resolved fluorescence at 2.09 μm in Tm:Ho–YAG crystals,” Opt. Mater. 3, 157–161 (1994).
    [CrossRef]
  22. A. Nikitichev, “Upconversion coefficient measurements in Tm–Ho:YLF and YAG crystals,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 498–500.
  23. S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
    [CrossRef]
  24. S. R. Bowman, G. J. Quarles, B. J. Feldman, “Upconversion losses in flashlamp-pumped Cr,Tm:YAG,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 169–173.
  25. J. K. Tyminski, D. G. Franich, M. Kokta, “Gain dynamics of Tm:Ho:YAG pumped in the near infrared,” J. Appl. Phys. 65, 3181–3188 (1989).
    [CrossRef]
  26. N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
    [CrossRef]
  27. C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996).
    [CrossRef]
  28. S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.
  29. E. D. Filer, N. P. Barnes, F. L. Naranjo, M. N. Kokta, “Spectroscopy and lasing in Ho:Tm:Lu3Al5O12,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 411–414.
  30. E. D. Filer, C. A. Morrison, N. P. Barnes, B. M. Walsh, “YLF isomorphs for Ho and Tm applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.
  31. V. A. French, R. C. Powell, “Laser-induced grating measurements of energy migration in Tm,Ho:YAG,” Opt. Lett. 16, 666–668 (1991).
    [CrossRef] [PubMed]
  32. V. A. French, R. R. Petrin, R. C. Powell, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018–8026 (1992).
    [CrossRef]
  33. K. M. Dinndorf, H. P. Jensen, “Distribution of stored energy in the excited manifolds of Tm and Ho in 2 micron laser materials,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 131–135.
  34. C. A. Morrison, R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, L. Eyring, eds., (North-Holland, Amsterdam, 1982), pp. 461–692.
    [CrossRef]
  35. S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [CrossRef]
  36. S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
    [CrossRef]
  37. W. Koechner, Solid-State Laser Engineering, (Springer-Verlag, Berlin, 1976) Chap. 7, pp. 344–396.
    [CrossRef]

1996 (5)

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996).
[CrossRef]

G. Rustad, K. Stenerson, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

N. P. Barnes, W. J. Rodriguez, B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13, 2872–2882 (1996).
[CrossRef]

R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. Harrell Klein, P. A. Robinson, “Coherent lidar airborne wind sensor. II. Flight test at 2 and 10 μm,” Appl. Opt. 35, 7117–7127 (1996).

1994 (2)

L. B. Shaw, R. S. F. Chang, N. Djeu, “Measurement of up-conversion probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[CrossRef]

M. Falconieri, G. Salvetti, “Pumping-laser-fluence dependence of the time resolved fluorescence at 2.09 μm in Tm:Ho–YAG crystals,” Opt. Mater. 3, 157–161 (1994).
[CrossRef]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

1992 (3)

V. A. French, R. R. Petrin, R. C. Powell, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018–8026 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

1991 (4)

S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

V. A. French, R. C. Powell, “Laser-induced grating measurements of energy migration in Tm,Ho:YAG,” Opt. Lett. 16, 666–668 (1991).
[CrossRef] [PubMed]

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

G. Armagan, A. M. Buoncristiani, B. Di Bartolo, “Energy transfer and thermalization in YAG:Tm,Ho,” J. Lumin. 48&49, 171–174 (1991).

1989 (2)

J. K. Tyminski, D. G. Franich, M. Kokta, “Gain dynamics of Tm:Ho:YAG pumped in the near infrared,” J. Appl. Phys. 65, 3181–3188 (1989).
[CrossRef]

A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989).
[CrossRef]

1988 (4)

A. A. Nikitichev, “Temperature dependence of the gain in Y3Al5O12:Cr3+:Tm3+:Ho3+,” Sov. J. Quantum Electron. 18, 918–919 (1988).
[CrossRef]

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988).
[CrossRef]

1965 (1)

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Ames, L. L.

Amzajerdian, F.

F. Amzajerdian, M. J. Kavaya, “Development of solid state coherent lidars for global wind measurements,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 15–17.

Antipenko, B. M.

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

Armagan, G.

G. Armagan, A. M. Buoncristiani, B. Di Bartolo, “Energy transfer and thermalization in YAG:Tm,Ho,” J. Lumin. 48&49, 171–174 (1991).

G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.

G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.

Auyeung, R. C. Y.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Bair, C. H.

G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.

Barnes, N. P.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996).
[CrossRef]

N. P. Barnes, W. J. Rodriguez, B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13, 2872–2882 (1996).
[CrossRef]

E. D. Filer, C. A. Morrison, N. P. Barnes, B. M. Walsh, “YLF isomorphs for Ho and Tm applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.

J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.

E. D. Filer, N. P. Barnes, F. L. Naranjo, M. N. Kokta, “Spectroscopy and lasing in Ho:Tm:Lu3Al5O12,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 411–414.

G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.

Bowman, S. R.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

S. R. Bowman, G. J. Quarles, B. J. Feldman, “Upconversion losses in flashlamp-pumped Cr,Tm:YAG,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 169–173.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Brenier, A.

A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989).
[CrossRef]

Brockman, P.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Buchenkov, V. A.

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

Buoncristiani, A. M.

G. Armagan, A. M. Buoncristiani, B. Di Bartolo, “Energy transfer and thermalization in YAG:Tm,Ho,” J. Lumin. 48&49, 171–174 (1991).

G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.

G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.

Byer, R. L.

G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988).
[CrossRef]

Callenas, A.

G. Hansson, A. Callenas, C. Nelsson, “Upconversion studies in laser diode pumped Tm,Ho:YLiF4,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 446–449.

Calloway, R. S.

Chang, R. S. F.

L. B. Shaw, R. S. F. Chang, N. Djeu, “Measurement of up-conversion probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[CrossRef]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Di Bartolo, B.

G. Armagan, A. M. Buoncristiani, B. Di Bartolo, “Energy transfer and thermalization in YAG:Tm,Ho,” J. Lumin. 48&49, 171–174 (1991).

Dinndorf, K. M.

K. M. Dinndorf, H. P. Jensen, “Distribution of stored energy in the excited manifolds of Tm and Ho in 2 micron laser materials,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 131–135.

Djeu, N.

L. B. Shaw, R. S. F. Chang, N. Djeu, “Measurement of up-conversion probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[CrossRef]

Epp, D.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Falconieri, M.

M. Falconieri, G. Salvetti, “Pumping-laser-fluence dependence of the time resolved fluorescence at 2.09 μm in Tm:Ho–YAG crystals,” Opt. Mater. 3, 157–161 (1994).
[CrossRef]

Fan, T. S.

G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).

Fan, T. Y.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988).
[CrossRef]

Feldman, B. J.

S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

S. R. Bowman, G. J. Quarles, B. J. Feldman, “Upconversion losses in flashlamp-pumped Cr,Tm:YAG,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 169–173.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Filer, E. D.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

E. D. Filer, N. P. Barnes, F. L. Naranjo, M. N. Kokta, “Spectroscopy and lasing in Ho:Tm:Lu3Al5O12,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 411–414.

E. D. Filer, C. A. Morrison, N. P. Barnes, B. M. Walsh, “YLF isomorphs for Ho and Tm applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.

Forney, P.

Franich, D. G.

J. K. Tyminski, D. G. Franich, M. Kokta, “Gain dynamics of Tm:Ho:YAG pumped in the near infrared,” J. Appl. Phys. 65, 3181–3188 (1989).
[CrossRef]

French, V. A.

V. A. French, R. R. Petrin, R. C. Powell, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018–8026 (1992).
[CrossRef]

V. A. French, R. C. Powell, “Laser-induced grating measurements of energy migration in Tm,Ho:YAG,” Opt. Lett. 16, 666–668 (1991).
[CrossRef] [PubMed]

Geusic, J. E.

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Ghibaudo, J. B.

J. B. Ghibaudo, J. Y. Labandibar, A. Marini, “Water vapour and wind measurements by a two micron space lidar,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 7–10.

Glebov, A. S.

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

Grund, C. J.

C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1996), pp. 235–238.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Han, G.

C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hansson, G.

G. Hansson, A. Callenas, C. Nelsson, “Upconversion studies in laser diode pumped Tm,Ho:YLiF4,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 446–449.

Harrell Klein, S.

Hawley, J. G.

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hess, R. V.

G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.

Huber, G.

G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988).
[CrossRef]

Inge, A. T.

G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.

Jani, M. G.

R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

Jensen, H. P.

K. M. Dinndorf, H. P. Jensen, “Distribution of stored energy in the excited manifolds of Tm and Ho in 2 micron laser materials,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 131–135.

Johnson, L. F.

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Kavaya, M. J.

F. Amzajerdian, M. J. Kavaya, “Development of solid state coherent lidars for global wind measurements,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 15–17.

Kiseleva, T. I.

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

Koechner, W.

W. Koechner, Solid-State Laser Engineering, (Springer-Verlag, Berlin, 1976) Chap. 7, pp. 344–396.
[CrossRef]

Kokta, M.

R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

J. K. Tyminski, D. G. Franich, M. Kokta, “Gain dynamics of Tm:Ho:YAG pumped in the near infrared,” J. Appl. Phys. 65, 3181–3188 (1989).
[CrossRef]

Kokta, M. N.

E. D. Filer, N. P. Barnes, F. L. Naranjo, M. N. Kokta, “Spectroscopy and lasing in Ho:Tm:Lu3Al5O12,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 411–414.

Krupke, W. F.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Labandibar, J. Y.

J. B. Ghibaudo, J. Y. Labandibar, A. Marini, “Water vapour and wind measurements by a two micron space lidar,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 7–10.

Leavitt, R. P.

C. A. Morrison, R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, L. Eyring, eds., (North-Holland, Amsterdam, 1982), pp. 461–692.
[CrossRef]

Lee, C. J.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996).
[CrossRef]

Lockard, G. E.

J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.

Lynn, J. G.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Marini, A.

J. B. Ghibaudo, J. Y. Labandibar, A. Marini, “Water vapour and wind measurements by a two micron space lidar,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 7–10.

Marquardt, C.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

McMahon, J.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Mitzcherlich, P.

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988).
[CrossRef]

Mitzscherlich, P.

G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).

Modlin, E. A.

G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.

J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.

Moncorge, R.

A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989).
[CrossRef]

Morrison, C. A.

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

E. D. Filer, C. A. Morrison, N. P. Barnes, B. M. Walsh, “YLF isomorphs for Ho and Tm applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.

C. A. Morrison, R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, L. Eyring, eds., (North-Holland, Amsterdam, 1982), pp. 461–692.
[CrossRef]

Naranjo, F. L.

E. D. Filer, N. P. Barnes, F. L. Naranjo, M. N. Kokta, “Spectroscopy and lasing in Ho:Tm:Lu3Al5O12,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 411–414.

Nelsson, C.

G. Hansson, A. Callenas, C. Nelsson, “Upconversion studies in laser diode pumped Tm,Ho:YLiF4,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 446–449.

Nikitichev, A.

A. Nikitichev, “Upconversion coefficient measurements in Tm–Ho:YLF and YAG crystals,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 498–500.

Nikitichev, A. A.

A. A. Nikitichev, “Temperature dependence of the gain in Y3Al5O12:Cr3+:Tm3+:Ho3+,” Sov. J. Quantum Electron. 18, 918–919 (1988).
[CrossRef]

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

Otto, R. G.

Payne, S. A.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Pedrini, C.

A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989).
[CrossRef]

Petrin, R. R.

V. A. French, R. R. Petrin, R. C. Powell, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018–8026 (1992).
[CrossRef]

R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

Pismennyi, V. A.

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

Powell, R. C.

V. A. French, R. R. Petrin, R. C. Powell, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018–8026 (1992).
[CrossRef]

R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

V. A. French, R. C. Powell, “Laser-induced grating measurements of energy migration in Tm,Ho:YAG,” Opt. Lett. 16, 666–668 (1991).
[CrossRef] [PubMed]

Quarles, G. J.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

S. R. Bowman, G. J. Quarles, B. J. Feldman, “Upconversion losses in flashlamp-pumped Cr,Tm:YAG,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 169–173.

Riley, K. J.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Robinson, P. A.

Rodriguez, W. J.

Rubin, J.

A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989).
[CrossRef]

Rustad, G.

G. Rustad, K. Stenerson, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

Salvetti, G.

M. Falconieri, G. Salvetti, “Pumping-laser-fluence dependence of the time resolved fluorescence at 2.09 μm in Tm:Ho–YAG crystals,” Opt. Mater. 3, 157–161 (1994).
[CrossRef]

Searles, S.

S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

Searles, S. K.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Shaw, L. B.

L. B. Shaw, R. S. F. Chang, N. Djeu, “Measurement of up-conversion probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[CrossRef]

Singh, U. N.

J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

Steakley, B. C.

Stenerson, K.

G. Rustad, K. Stenerson, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

Stone, R.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Swanson, D.

Targ, R.

Tucker, J. E.

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Tyminski, J. K.

J. K. Tyminski, D. G. Franich, M. Kokta, “Gain dynamics of Tm:Ho:YAG pumped in the near infrared,” J. Appl. Phys. 65, 3181–3188 (1989).
[CrossRef]

Van Uitert, L. G.

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

Walsh, B. M.

N. P. Barnes, W. J. Rodriguez, B. M. Walsh, “Ho:Tm:YLF laser amplifiers,” J. Opt. Soc. Am. B 13, 2872–2882 (1996).
[CrossRef]

E. D. Filer, C. A. Morrison, N. P. Barnes, B. M. Walsh, “YLF isomorphs for Ho and Tm applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.

G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.

Whitney, W.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

Williams-Byrd, J. A.

J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.

Winings, M. J.

S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

Yu, J.

J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Zarifis, V.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. F. Johnson, J. E. Geusic, L. G. Van Uitert, “Coherent oscillations from Tm3+, Ho3+, Yb3+, and Er3+ ions in yttrium aluminum garnet,” Appl. Phys. Lett. 7, 127–129 (1965).
[CrossRef]

IEEE J. Quantum Electron (1)

T. Y. Fan, G. Huber, R. L. Byer, P. Mitzcherlich, “Spectroscopy and diode laser-pumped operation of Tm,Ho:YAG,” IEEE J. Quantum Electron 24, 924–933 (1988).
[CrossRef]

IEEE J. Quantum Electron. (6)

G. Rustad, K. Stenerson, “Modeling of laser-pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron. 32, 1645–1656 (1996).
[CrossRef]

S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Infrared cross-section measurements for crystals doped with Er3+, Tm3+, Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[CrossRef]

S. R. Bowman, M. J. Winings, S. Searles, B. J. Feldman, “Short-pulsed 2.1 μm laser performance of Cr,Tm,Ho,YAG,” IEEE J. Quantum Electron. 27, 1129–1131 (1991).
[CrossRef]

S. R. Bowman, M. J. Winings, R. C. Y. Auyeung, J. E. Tucker, S. K. Searles, B. J. Feldman, “Laser and spectral properties of Cr,Tm,Ho:YAG at 2.1 μm,” IEEE J. Quantum Electron. 27, 2142–2149 (1991).
[CrossRef]

N. P. Barnes, E. D. Filer, C. A. Morrison, C. J. Lee, “Ho:Tm lasers. I: Theoretical,” IEEE J. Quantum Electron. 32, 92–103 (1996).
[CrossRef]

C. J. Lee, G. Han, N. P. Barnes, “Ho:Tm lasers. II: Experiments,” IEEE J. Quantum Electron. 32, 104–111 (1996).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

J. Appl. Phys. (1)

J. K. Tyminski, D. G. Franich, M. Kokta, “Gain dynamics of Tm:Ho:YAG pumped in the near infrared,” J. Appl. Phys. 65, 3181–3188 (1989).
[CrossRef]

J. Lumin. (2)

G. Huber, P. Mitzscherlich, T. S. Fan, R. L. Byer, “Energy transfer and inversion saturation in Tm,Ho:YAG,” J. Lumin. 40&41, 509–510 (1988).

G. Armagan, A. M. Buoncristiani, B. Di Bartolo, “Energy transfer and thermalization in YAG:Tm,Ho,” J. Lumin. 48&49, 171–174 (1991).

J. Opt. Soc. Am. B (1)

J. Phys. (France) (1)

A. Brenier, J. Rubin, R. Moncorge, C. Pedrini, “Excited-state dynamics of the Tm3+ ions and Tm3+ → Ho3+ energy transfers in LiYF4,” J. Phys. (France) 50, 1463–1482 (1989).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (2)

R. R. Petrin, M. G. Jani, R. C. Powell, M. Kokta, “Spectral dynamics of laser-pumped Y3Al5O12:Tm,Ho lasers,” Opt. Mater. 1, 111–124 (1992).
[CrossRef]

M. Falconieri, G. Salvetti, “Pumping-laser-fluence dependence of the time resolved fluorescence at 2.09 μm in Tm:Ho–YAG crystals,” Opt. Mater. 3, 157–161 (1994).
[CrossRef]

Opt. Spectrosc. (1)

B. M. Antipenko, V. A. Buchenkov, A. S. Glebov, T. I. Kiseleva, A. A. Nikitichev, V. A. Pismennyi, “Spectroscopy of YAG:CrTmHo laser crystals,” Opt. Spectrosc. 64, 772–774 (1988).

Phys. Rev. B (2)

L. B. Shaw, R. S. F. Chang, N. Djeu, “Measurement of up-conversion probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12,” Phys. Rev. B 50, 6609–6619 (1994).
[CrossRef]

V. A. French, R. R. Petrin, R. C. Powell, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018–8026 (1992).
[CrossRef]

Sov. J. Quantum Electron. (1)

A. A. Nikitichev, “Temperature dependence of the gain in Y3Al5O12:Cr3+:Tm3+:Ho3+,” Sov. J. Quantum Electron. 18, 918–919 (1988).
[CrossRef]

Other (15)

G. Armagan, B. M. Walsh, N. P. Barnes, E. A. Modlin, A. M. Buoncristiani, “Determination of Tm–Ho rate coefficients from spectroscopic measurements,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 141–145.

G. Armagan, A. M. Buoncristiani, C. H. Bair, A. T. Inge, R. V. Hess, “Investigation of loss processes of Tm and Tm,Ho in YAG,” in Advanced Solid-State Lasers, G. Dubé, L. Chase, eds., Vol. 10 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 201–204.

G. Hansson, A. Callenas, C. Nelsson, “Upconversion studies in laser diode pumped Tm,Ho:YLiF4,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 446–449.

A. Nikitichev, “Upconversion coefficient measurements in Tm–Ho:YLF and YAG crystals,” in Advanced Solid-State Lasers, B. Chai, S. Payne, eds., Vol. 24 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1995), pp. 498–500.

S. R. Bowman, G. J. Quarles, B. J. Feldman, “Upconversion losses in flashlamp-pumped Cr,Tm:YAG,” in Advanced Solid-State Lasers, L. L. Chase, A. A. Pinto, eds., Vol. 13 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1992), pp. 169–173.

S. R. Bowman, J. G. Lynn, S. K. Searles, B. J. Feldman, J. McMahon, W. Whitney, C. Marquardt, D. Epp, G. J. Quarles, K. J. Riley, “Comparative study of diode-pumped two-micron laser materials,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 415–418.

E. D. Filer, N. P. Barnes, F. L. Naranjo, M. N. Kokta, “Spectroscopy and lasing in Ho:Tm:Lu3Al5O12,” in Advanced Solid-State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 411–414.

E. D. Filer, C. A. Morrison, N. P. Barnes, B. M. Walsh, “YLF isomorphs for Ho and Tm applications,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 127–130.

K. M. Dinndorf, H. P. Jensen, “Distribution of stored energy in the excited manifolds of Tm and Ho in 2 micron laser materials,” in Advanced Solid-State Lasers, T. Y. Fan, B. Chai, eds., Vol. 20 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 131–135.

C. A. Morrison, R. P. Leavitt, “Spectroscopic properties of triply ionized lanthanides in transparent host crystals,” in Handbook on the Physics and Chemistry of Rare Earths, K. A. Gschneidner, L. Eyring, eds., (North-Holland, Amsterdam, 1982), pp. 461–692.
[CrossRef]

C. J. Grund, “High resolution Doppler lidar measurements of wind and turbulence,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, New York, 1996), pp. 235–238.

J. B. Ghibaudo, J. Y. Labandibar, A. Marini, “Water vapour and wind measurements by a two micron space lidar,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 7–10.

F. Amzajerdian, M. J. Kavaya, “Development of solid state coherent lidars for global wind measurements,” in Proceedings of the 9th Conference on Coherent Laser Radar, K. O. Steinvall, ed. (FOA, Linköping, Sweden, 1997), pp. 15–17.

J. A. Williams-Byrd, U. N. Singh, N. P. Barnes, G. E. Lockard, E. A. Modlin, J. Yu, “Room-temperature, diode-pumped Ho:Tm:YLF laser amplifiers generating 700 mJ at 2 μm,” in Advanced Solid State Lasers, C. R. Pollocks, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 199–201.

W. Koechner, Solid-State Laser Engineering, (Springer-Verlag, Berlin, 1976) Chap. 7, pp. 344–396.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic energy diagram of the lower manifolds of Tm3+ and Ho3+.

Fig. 2
Fig. 2

Experimental arrangement for amplification measurements.

Fig. 3
Fig. 3

Comparison between simulations and measurements of αmax as a function of pump irradiance in (a) Tm,Ho:YAG and (b) Tm,Ho:YLF.

Fig. 4
Fig. 4

Comparison between simulations and measurements of τ R as a function of pump irradiance in (a) Tm,Ho:YAG and (b) Tm,Ho:YLF.

Fig. 5
Fig. 5

Comparison between simulations and measurements of τ D as a function of pump irradiance in (a) Tm,Ho:YAG and (b) Tm,Ho:YLF.

Fig. 6
Fig. 6

Comparison of the recorded and simulated amplification signals for a pump irradiance of ∼15 J cm-2 in (a) Tm,Ho:YAG and (b) Tm,Ho:YLF.

Fig. 7
Fig. 7

Extractable-energy efficiency as a function of absorbed-energy density for different pump durations in (a) 5% Tm, 0.5% Ho:YAG and (b) 5% Tm,0.5% Ho:YLF.

Fig. 8
Fig. 8

Extractable-energy efficiency as a function of Ho concentration for different Tm concentrations and for an absorbed-energy density of 10 J cm-3 and a 1-ms pump duration in (a) Tm,Ho:YAG and (b) Tm,Ho:YLF.

Fig. 9
Fig. 9

Population of manifolds 3 F 4 and 5 I 7 as a function of time for two successive complete energy extractions for an absorbed-energy density of 10 J cm-3 and a 1-ms pump duration in (a) 5% Tm,0.5% Ho:YAG and (b) 5% Tm,0.5% Ho:YLF.

Fig. 10
Fig. 10

Optimal Ho concentration as a function of absorbed-energy density for multipulse operation and a Tm concentration of 5% in (a) Tm,Ho:YAG and (b) Tm,Ho:YLF.

Fig. 11
Fig. 11

Extractable-energy efficiency as a function of absorbed-energy density for multipulse operation, a 5% Tm concentration, and the optimal Ho concentration given in Fig. 10: (a) in Tm,Ho:YAG, (b) in Tm,Ho:YLF.

Fig. 12
Fig. 12

Fraction of thermal energy as a function of absorbed-energy density for multipulse operation in (a) 5% Tm,0.5% Ho:YAG and (b) 5% Tm,0.5% Ho:YLF.

Tables (6)

Tables Icon

Table 1 Experimental and Spectroscopic Parameters Used in the Numerical Simulations

Tables Icon

Table 2 Model Parameters Resulting from the Fit of Numerical Simulations to Experiments

Tables Icon

Table 3 Relative Standard Deviations Calculated between Simulated and Experimental Data for the Three Variables α M , τ R , and τ D

Tables Icon

Table 4 Previous Measurements of Energy-Transfer Parameters

Tables Icon

Table 5 Energy Distribution at Gain Peak in 5% Tm, 0.5% Ho YAG and YLF for an Absorbed Pump Energy Density of 10 J cm-3

Tables Icon

Table 6 Performance of Single- and Multi-pulse Energy Extraction in YAG and YLF with Optimum Ho Concentration and Pulse Separation Greater Than 200 μs for an Absorbed Pump Energy Density of 10 J cm-3

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

3 H 6 , 3 H 4     3 F 4 , 3 F 4 .
3 F 4 , 5 I 8     3 H 6 , 5 I 7 ,
3 H 6 , 5 I 7     3 F 4 , 5 I 8 .
3 F 4 , 5 I 7     3 H 6 , 5 I 5 .
Tm = 3 F 4 + 3 H 6 ,     Ho = 5 I 7 + 5 I 8 ,
θ = q HT q TH = Z 3 F 4 Z 3 H 6 Z 5 I 8 Z I 7 5 ,
Z M = i M   g i   exp - E i / kT .
f a = exp - E a / kT Z 5 I 8 ,     f b = exp - E b / kT Z 5 I 7 .
d 3 F 4 / d t = η P σ P Φ P 3 H 6 - r T 3 F 4 - q TH 3 F 4 5 I 8 + q HT 3 H 6 5 I 7 , d 5 I 7 / d t = - r H 5 I 7 - q UC 3 F 4 5 I 7 + q TH 3 F 4 5 I 8 - q HT 3 H 6 5 I 7 + σ L Φ L f a 5 I 8 - f b 5 I 7 , d Φ P / d z P = - σ P Φ P 3 H 6 , d Φ L / d z L = - σ L Φ L f a 5 I 8 - f b 5 I 7 ,
d n / d t = r P 1 - n - r T + r TH n + r TH θ n + r TH 1 - θ nn ,
d n / d t = - r H + R θ r TH n + Rr TH n - R r TH 1 - θ + r UC nn - r L f a + f b n - f a ,
d r P / d z P = - α P r P 1 - n ,
d r L / d z L = α L r L f a + f b n - f a ,
R = Tm / Ho     ratio of Tm to Ho concentration , r TH = q TH Ho ,     r UC = q UC Ho , α P = σ P Tm ,     α L = σ L Ho , r P = η P σ P Φ P ,     r L = σ L Φ L .
r P + r ,   0 ,   t = η P σ P E P + h ν P   f t 2 π ω P 2 exp - 2 r 2 ω P 2 , r P - r ,   l ,   t = η P σ P E P - h ν P   f t 2 π ω P 2 exp - 2 r 2 ω P 2 ,
A t = 2 π r Ψ S r ,   0 exp f a + f b α L 0 l n r ,   z ,   t d z r   d r ,
A t = 4 R ω 2 r   exp f a + f b α L 0 l   n r ,   z ,   t d z - 2 r 2 R ω 2 r   d r ,
2 - η P η P - 1 = q TH   5 I 8 q CR 3 H 6 r 5 I 4 r 5 I 4 + q HT 3 H 6 ,
E EX = Ho h ν L n i - n 0 ,
Δ T = f Q f P E AP r 0 2 λ + r 0 2 8 k ,

Metrics