Abstract

We discuss the development of a frequency-agile receiver for CO2 laser-based differential absorption lidar (DIAL) systems. The receiver is based on the insertion of a low-order tunable etalon into the detector field of view. The incorporation of the etalon into the receiver reduces system noise by decreasing the instantaneous spectral bandwidth of the IR detector to a narrow wavelength range centered on the transmitted CO2 laser line, thereby improving the overall D* of the detection system. A consideration of overall lidar system performance results in a projected factor of a 2–7 reduction in detector system noise, depending on the characteristics of the environment being probed. These improvements can play a key role in extending the ability of DIAL systems to monitor chemical releases from long standoff distances.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental comparison of heterodyne and direct detection for pulsed differential absorption CO2 lidar,” Appl. Opt. 22, 682–689 (1983).
    [CrossRef] [PubMed]
  2. R. E. Warren, “Optimum detection of multiple vapor materials with frequency-agile lidar,” Appl. Opt. 35, 4180–4193 (1996).
    [CrossRef] [PubMed]
  3. E. E. Uthe, N. B. Nielsen, R. D. Kaiser, “Airborne lidar and radiometric detection and analysis of chemical plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 211–212.
  4. M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.
  5. M. Schmitt, B. McVey, B. Cooke, M. Busch, “Comprehensive system model for CO2 DIAL,” in Gas and Chemical Lasers, R. C. Sze, ed., Proc. SPIE2702, 95–103 (1996).
    [CrossRef]
  6. E. P. MacKerrow, M. Schmitt, “Measurement of integrated speckle statistics for CO2 lidar returns for a moving, nonuniform, hard target,” Appl. Opt. 36, 6921–6937 (1997).
    [CrossRef]
  7. J. W. Goodman, “Statistical properties of speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984).
  8. R. C. Harney, “Laser prf considerations in differential absorption lidar applications,” Appl. Opt. 22, 3747–3750 (1983).
    [CrossRef] [PubMed]
  9. W. D. Rogatto, ed., The Infrared and Electro-Optical Systems Handbook: Vol. 3, Electro-Optical Components (SPIE, Bellingham, Wash., 1993), pp. 220–227.
  10. G. Hernandez, Fabry Perot Interferometers (Cambridge U. Press, New York, 1988).
  11. P. D. Atherton, N. K. Ray, J. Ring, T. R. Ricks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
    [CrossRef]
  12. J. T. Knudtson, D. S. Levy, K. C. Herr, “Electronically tunable, first-order Fabry-Perot infrared filter,” Opt. Eng. 35, 2313–2320 (1996).
    [CrossRef]
  13. S. L. Mielke, R. E. Ryan, T. Hilgeman, L. Lesyna, R. G. Madonna, W. C. Van Nostrand, “Measurements of phase shift on reflection for low-order infrared Fabry–Perot dielectric stack mirrors,” Appl. Opt. 36, 8139–8144 (1997).
    [CrossRef]
  14. W. J. Marinelli, K. W. Holtzclaw, G. D. Dippel, D. Blair, D. R. Rossi, “Infrared imaging spectroradiometer,” Final Report for U.S. Air Force contract F30602-94-C-0057, Physical Sciences Inc. Technical Report PSI-1207/TR-1509 (Physical Sciences Inc., Andover, Mass., 1993).
  15. S. Alejandro, “N-Able/ROS,” 1997 MASINT Chemical Defense Science and Technology Review, Kansas City, Mo., 10–12 June 1997.

1997

1996

J. T. Knudtson, D. S. Levy, K. C. Herr, “Electronically tunable, first-order Fabry-Perot infrared filter,” Opt. Eng. 35, 2313–2320 (1996).
[CrossRef]

R. E. Warren, “Optimum detection of multiple vapor materials with frequency-agile lidar,” Appl. Opt. 35, 4180–4193 (1996).
[CrossRef] [PubMed]

1983

1981

P. D. Atherton, N. K. Ray, J. Ring, T. R. Ricks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Alejandro, S.

S. Alejandro, “N-Able/ROS,” 1997 MASINT Chemical Defense Science and Technology Review, Kansas City, Mo., 10–12 June 1997.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Atherton, P. D.

P. D. Atherton, N. K. Ray, J. Ring, T. R. Ricks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Blair, D.

W. J. Marinelli, K. W. Holtzclaw, G. D. Dippel, D. Blair, D. R. Rossi, “Infrared imaging spectroradiometer,” Final Report for U.S. Air Force contract F30602-94-C-0057, Physical Sciences Inc. Technical Report PSI-1207/TR-1509 (Physical Sciences Inc., Andover, Mass., 1993).

Busch, M.

M. Schmitt, B. McVey, B. Cooke, M. Busch, “Comprehensive system model for CO2 DIAL,” in Gas and Chemical Lasers, R. C. Sze, ed., Proc. SPIE2702, 95–103 (1996).
[CrossRef]

Colby, G.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Cooke, B.

M. Schmitt, B. McVey, B. Cooke, M. Busch, “Comprehensive system model for CO2 DIAL,” in Gas and Chemical Lasers, R. C. Sze, ed., Proc. SPIE2702, 95–103 (1996).
[CrossRef]

Czyzak, S.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

DeFeo, W. E.

Dippel, G. D.

W. J. Marinelli, K. W. Holtzclaw, G. D. Dippel, D. Blair, D. R. Rossi, “Infrared imaging spectroradiometer,” Final Report for U.S. Air Force contract F30602-94-C-0057, Physical Sciences Inc. Technical Report PSI-1207/TR-1509 (Physical Sciences Inc., Andover, Mass., 1993).

Fox, M. J.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Ghoshroy, S.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Gonglewski, J.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Goodman, J. W.

J. W. Goodman, “Statistical properties of speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984).

Harney, R. C.

Hasson, V.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Hernandez, G.

G. Hernandez, Fabry Perot Interferometers (Cambridge U. Press, New York, 1988).

Herr, K. C.

J. T. Knudtson, D. S. Levy, K. C. Herr, “Electronically tunable, first-order Fabry-Perot infrared filter,” Opt. Eng. 35, 2313–2320 (1996).
[CrossRef]

Hilgeman, T.

Holtzclaw, K. W.

W. J. Marinelli, K. W. Holtzclaw, G. D. Dippel, D. Blair, D. R. Rossi, “Infrared imaging spectroradiometer,” Final Report for U.S. Air Force contract F30602-94-C-0057, Physical Sciences Inc. Technical Report PSI-1207/TR-1509 (Physical Sciences Inc., Andover, Mass., 1993).

Kaiser, R.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Kaiser, R. D.

E. E. Uthe, N. B. Nielsen, R. D. Kaiser, “Airborne lidar and radiometric detection and analysis of chemical plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 211–212.

Killinger, D. K.

Knudtson, J. T.

J. T. Knudtson, D. S. Levy, K. C. Herr, “Electronically tunable, first-order Fabry-Perot infrared filter,” Opt. Eng. 35, 2313–2320 (1996).
[CrossRef]

Kovacs, M.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Lesyna, L.

Levy, D. S.

J. T. Knudtson, D. S. Levy, K. C. Herr, “Electronically tunable, first-order Fabry-Perot infrared filter,” Opt. Eng. 35, 2313–2320 (1996).
[CrossRef]

MacKerrow, E. P.

Madonna, R. G.

Marinelli, W. J.

W. J. Marinelli, K. W. Holtzclaw, G. D. Dippel, D. Blair, D. R. Rossi, “Infrared imaging spectroradiometer,” Final Report for U.S. Air Force contract F30602-94-C-0057, Physical Sciences Inc. Technical Report PSI-1207/TR-1509 (Physical Sciences Inc., Andover, Mass., 1993).

McVey, B.

M. Schmitt, B. McVey, B. Cooke, M. Busch, “Comprehensive system model for CO2 DIAL,” in Gas and Chemical Lasers, R. C. Sze, ed., Proc. SPIE2702, 95–103 (1996).
[CrossRef]

Menyuk, N.

Mielke, S. L.

Nielsen, N. B.

E. E. Uthe, N. B. Nielsen, R. D. Kaiser, “Airborne lidar and radiometric detection and analysis of chemical plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 211–212.

Ray, N. K.

P. D. Atherton, N. K. Ray, J. Ring, T. R. Ricks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Ricks, T. R.

P. D. Atherton, N. K. Ray, J. Ring, T. R. Ricks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Ring, J.

P. D. Atherton, N. K. Ray, J. Ring, T. R. Ricks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Rossi, D. R.

W. J. Marinelli, K. W. Holtzclaw, G. D. Dippel, D. Blair, D. R. Rossi, “Infrared imaging spectroradiometer,” Final Report for U.S. Air Force contract F30602-94-C-0057, Physical Sciences Inc. Technical Report PSI-1207/TR-1509 (Physical Sciences Inc., Andover, Mass., 1993).

Ryan, R. E.

Schmitt, M.

E. P. MacKerrow, M. Schmitt, “Measurement of integrated speckle statistics for CO2 lidar returns for a moving, nonuniform, hard target,” Appl. Opt. 36, 6921–6937 (1997).
[CrossRef]

M. Schmitt, B. McVey, B. Cooke, M. Busch, “Comprehensive system model for CO2 DIAL,” in Gas and Chemical Lasers, R. C. Sze, ed., Proc. SPIE2702, 95–103 (1996).
[CrossRef]

Stephen, M.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Uthe, E.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Uthe, E. E.

E. E. Uthe, N. B. Nielsen, R. D. Kaiser, “Airborne lidar and radiometric detection and analysis of chemical plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 211–212.

Van Nostrand, W. C.

Warren, R. E.

Wendt, R.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

Appl. Opt.

Opt. Eng.

P. D. Atherton, N. K. Ray, J. Ring, T. R. Ricks, “Tunable Fabry-Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

J. T. Knudtson, D. S. Levy, K. C. Herr, “Electronically tunable, first-order Fabry-Perot infrared filter,” Opt. Eng. 35, 2313–2320 (1996).
[CrossRef]

Other

W. J. Marinelli, K. W. Holtzclaw, G. D. Dippel, D. Blair, D. R. Rossi, “Infrared imaging spectroradiometer,” Final Report for U.S. Air Force contract F30602-94-C-0057, Physical Sciences Inc. Technical Report PSI-1207/TR-1509 (Physical Sciences Inc., Andover, Mass., 1993).

S. Alejandro, “N-Able/ROS,” 1997 MASINT Chemical Defense Science and Technology Review, Kansas City, Mo., 10–12 June 1997.

E. E. Uthe, N. B. Nielsen, R. D. Kaiser, “Airborne lidar and radiometric detection and analysis of chemical plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 211–212.

M. J. Fox, S. Alejandro, J. Gonglewski, M. Stephen, R. Wendt, G. Colby, V. Hasson, M. Kovacs, S. Ghoshroy, E. Uthe, R. Kaiser, S. Czyzak, “The Phillips Laboratory field lidar demonstration (FLD) remote sensing experiments in long range standoff detection of chemical species,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton Va., 1994), pp. 201–210.

M. Schmitt, B. McVey, B. Cooke, M. Busch, “Comprehensive system model for CO2 DIAL,” in Gas and Chemical Lasers, R. C. Sze, ed., Proc. SPIE2702, 95–103 (1996).
[CrossRef]

J. W. Goodman, “Statistical properties of speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1984).

W. D. Rogatto, ed., The Infrared and Electro-Optical Systems Handbook: Vol. 3, Electro-Optical Components (SPIE, Bellingham, Wash., 1993), pp. 220–227.

G. Hernandez, Fabry Perot Interferometers (Cambridge U. Press, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of the interferometer used in D* improvement measurements.

Fig. 2
Fig. 2

Effective linewidth of existing interferometer centered on the P(18) line as well as the location of neighboring laser lines.

Fig. 3
Fig. 3

Oscillator count calibration functions for the etalon capacitance micrometry system.

Fig. 4
Fig. 4

Zemax ray trace for the cooled lens assembly and MCT detector. F. L., focal length.

Fig. 5
Fig. 5

Side view of cooled lens housing: 4 in. (10.2 cm), 3/4 in. (1.9 cm), 4 3/4 in. (12.1 cm), 5 1/2 in. (14 cm).

Fig. 6
Fig. 6

Measured responsivity of detector with and without insertion of interferometer into the optical train.

Fig. 7
Fig. 7

Power spectral density function for detector viewing blackbody and liquid N2 (LN2)-cooled plate. The preamplifier bandwidth was 5 Hz to 30 MHz for these measurements.

Fig. 8
Fig. 8

Measured NEP with and without the interferometer present and D* improvement ratio calculated from the data. The average D* improvement is given by the horizontal dotted line. Error bars are 2σ.

Fig. 9
Fig. 9

Measured and calculated (scaled) D* as a function of temperature with and without the interferometer present in the optical train.

Fig. 10
Fig. 10

Sample model input parameters for the interferometer and the FSR filter transmission as well as the detector quantum efficiency as a function of wavelength.

Fig. 11
Fig. 11

D* curves calculated from the model for the detector as purchased, the existing lidar receiver (with the FSR filter and an f/3.2 cold shield), and with the interferometer added to that system. LARS, 8-μm long-wavelength pass.

Fig. 12
Fig. 12

Variation in amplifier and detector NEP as a function of detector D* for the basic receiver and the receiver with the tunable filter. LARS, 8-μm long-wavelength pass; AIRIS, tunable etalon.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

SNR = N × SNR det × 1 + SNR det SNR speckle 2 - 1 / 2 ,
σ CL plume = 1 2 ρ × SNR ,
σ CL plume = 1 2 ρ N × SNR det .
SNR det = P AV N D γ PRF D * A D γ - 1 1 / 2 d rec 2 4 L 2 r   exp - 2 KL ,
L ref 2   exp 2 KL ref = P AV r N D γ PRF d rec 2 2 D * A D γ - 1 1 / 2
D BLIP * λ ,   θ 1 / 2 = λ hc   η λ 2   sin 2   θ 1 / 2 0 λ max   η λ M p λ ,   T B d λ - 1 / 2 ,
M P , λ λ ,   T = 2 π c ε λ λ 4 exp hc / λ kT - 1 ,
I I 0 λ = T 1 - R 2 1 + 2 F π 2 sin 2 δ 2 ,
δ = 4 π l λ cos   θ - 2 ε λ ,
λ m = 2 l   cos   θ m + ε λ π ,
Δ λ FSR = λ max m max + 1 ,
NEP = N v / R ,
D * = A × Δ f / NEP ,

Metrics