Abstract

Optical remote sensing of ocean color is a well-established technique for inferring ocean properties. However, most retrieval algorithms are based on the assumption that the radiance received by satellite instruments is affected only by the phytoplankton pigment concentration and correlated substances. This assumption works well for open ocean water but becomes questionable for coastal waters. To reduce uncertainties associated with this assumption, we developed a new algorithm for the retrieval of marine constituents in a coastal environment. We assumed that ocean color can be adequately described by a three-component model made up of chlorophyll a, suspended matter, and yellow substance. The simultaneous retrieval of these three marine constituents and of the atmospheric aerosol content was accomplished through an inverse-modeling scheme in which the difference between simulated radiances exiting the atmosphere and radiances measured with a satellite sensor was minimized. Simulated radiances were generated with a comprehensive radiative transfer model that is applicable to the coupled atmosphere–ocean system. The method of simulated annealing was used to minimize the difference between measured and simulated radiances. To evaluate the retrieval algorithm, we used simulated (instead of measured) satellite-received radiances that were generated for specified concentrations of aerosols and marine constituents, and we tested the ability of the algorithm to retrieve assumed concentrations. Our results require experimental validation but show that the retrieval of marine constituents in coastal waters is possible.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Dundas, O. M. Johannessen, G. Berge, B. Heimdal, “Toxic algal bloom in Scandinavian waters, May–June, 1988,” Oceanography, 2, 9–14 (1989).
  2. I. Fyllingen, S. R. Erga, “Risk mapping of harmful algal blooms in Norwegian ocean areas. Part 1: coast and ocean,” Fisken Havet, 4, 7–57 (1991), in Norwegian.
  3. H. R. Gordon, M. H. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
    [CrossRef] [PubMed]
  4. K. J. Voss, S. G. Ackleson, “Ocean optics revisited,” sOpt. Photon. News 7, (11) 31–36 (1996).
    [CrossRef]
  5. S. C. Jain, J. R. Miller, “Subsurface water parameters: optimization approach to their determination from remotely sensed water color data,” Appl. Opt. 15, 886–890 (1976).
    [CrossRef] [PubMed]
  6. R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
    [CrossRef]
  7. J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
    [CrossRef]
  8. S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
    [CrossRef] [PubMed]
  9. P. E. Land, J. D. Haigh, “Atmospheric correction over case 2 waters with an iterative fitting algorithm,” Appl. Opt. 35, 5443–5451 (1996).
    [CrossRef] [PubMed]
  10. R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N.J., 1973), Chap. 7.
  11. Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere–ocean system,” Appl. Opt. 33, 431–442 (1994).
    [CrossRef] [PubMed]
  12. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).
  13. C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersmann, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
    [CrossRef] [PubMed]
  14. G. Thomas, K. Stamnes, Radiative Transfer in Atmospheres and Oceans (Cambridge U. Press, Cambridge, UK, 1998).
  15. K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  16. K. Stamnes, “Transfer of ultraviolet light in the atmosphere and ocean: a tutorial review,” in Solar Ultraviolet Radiation. Modelling, Measurements and Effects, C. S. Zerefos, A. F. Bais, eds., Vol. 1 of NATO Advanced Scientific Institutes Series (Springer-Verlag, Berlin, 1997), pp. 49–64.
    [CrossRef]
  17. G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Rep. AFGL-TR-86-0110, [Air Force Geophysics Laboratory (Ogden Projects, Inc.), Hanscom Air Force Base, Mass., 1986].
  18. E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in AGARD Conf. Proc. 183 (1976).
  19. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
    [CrossRef]
  20. L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
    [CrossRef]
  21. A. Morel, B. Gentili, “Diffuse reflectance of natural waters: its dependence on the sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
    [CrossRef] [PubMed]
  22. R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
    [CrossRef] [PubMed]
  23. A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
    [CrossRef]
  24. R. Doerffer, K. Sørensen, J. Aiken, “MERIS: potential for coastal application,” in Proceedings of the 21st Annual Conference of the Remote Sensing Society, P. J. Curran, C. Robertson, eds. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.
  25. M. Perry, ed., “MERIS: the medium resolution imaging spectrometer,” Report SP-1184 of the MERIS Scientific Advisory Group, March1995 (European Space Agency, Munich, Germany, 1996).
  26. J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).
  27. P. G. Hoel, “Introduction to Mathematical Statistics (Wiley, New York, 1947).

1996 (3)

K. J. Voss, S. G. Ackleson, “Ocean optics revisited,” sOpt. Photon. News 7, (11) 31–36 (1996).
[CrossRef]

P. E. Land, J. D. Haigh, “Atmospheric correction over case 2 waters with an iterative fitting algorithm,” Appl. Opt. 35, 5443–5451 (1996).
[CrossRef] [PubMed]

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

1994 (4)

1993 (1)

1991 (2)

A. Morel, B. Gentili, “Diffuse reflectance of natural waters: its dependence on the sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

I. Fyllingen, S. R. Erga, “Risk mapping of harmful algal blooms in Norwegian ocean areas. Part 1: coast and ocean,” Fisken Havet, 4, 7–57 (1991), in Norwegian.

1989 (2)

I. Dundas, O. M. Johannessen, G. Berge, B. Heimdal, “Toxic algal bloom in Scandinavian waters, May–June, 1988,” Oceanography, 2, 9–14 (1989).

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

1988 (1)

1987 (1)

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

1981 (3)

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

1976 (2)

Ackleson, S. G.

K. J. Voss, S. G. Ackleson, “Ocean optics revisited,” sOpt. Photon. News 7, (11) 31–36 (1996).
[CrossRef]

Aiken, J.

R. Doerffer, K. Sørensen, J. Aiken, “MERIS: potential for coastal application,” in Proceedings of the 21st Annual Conference of the Remote Sensing Society, P. J. Curran, C. Robertson, eds. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

Andersen, G. P.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Rep. AFGL-TR-86-0110, [Air Force Geophysics Laboratory (Ogden Projects, Inc.), Hanscom Air Force Base, Mass., 1986].

Baker, K. S.

Berge, G.

I. Dundas, O. M. Johannessen, G. Berge, B. Heimdal, “Toxic algal bloom in Scandinavian waters, May–June, 1988,” Oceanography, 2, 9–14 (1989).

Bézy, J. L.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Brent, R. P.

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N.J., 1973), Chap. 7.

Bricaud, A.

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Bruzzi, S.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Chetwynd, J. H.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Rep. AFGL-TR-86-0110, [Air Force Geophysics Laboratory (Ogden Projects, Inc.), Hanscom Air Force Base, Mass., 1986].

Clough, S. A.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Rep. AFGL-TR-86-0110, [Air Force Geophysics Laboratory (Ogden Projects, Inc.), Hanscom Air Force Base, Mass., 1986].

Delwart, S.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Doerffer, R.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

R. Doerffer, K. Sørensen, J. Aiken, “MERIS: potential for coastal application,” in Proceedings of the 21st Annual Conference of the Remote Sensing Society, P. J. Curran, C. Robertson, eds. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

Dundas, I.

I. Dundas, O. M. Johannessen, G. Berge, B. Heimdal, “Toxic algal bloom in Scandinavian waters, May–June, 1988,” Oceanography, 2, 9–14 (1989).

Erga, S. R.

I. Fyllingen, S. R. Erga, “Risk mapping of harmful algal blooms in Norwegian ocean areas. Part 1: coast and ocean,” Fisken Havet, 4, 7–57 (1991), in Norwegian.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in AGARD Conf. Proc. 183 (1976).

Fischer, J.

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).

Fyllingen, I.

I. Fyllingen, S. R. Erga, “Risk mapping of harmful algal blooms in Norwegian ocean areas. Part 1: coast and ocean,” Fisken Havet, 4, 7–57 (1991), in Norwegian.

Gentili, B.

Gordon, H. R.

Haigh, J. D.

Heimdal, B.

I. Dundas, O. M. Johannessen, G. Berge, B. Heimdal, “Toxic algal bloom in Scandinavian waters, May–June, 1988,” Oceanography, 2, 9–14 (1989).

Hoel, P. G.

P. G. Hoel, “Introduction to Mathematical Statistics (Wiley, New York, 1947).

Jain, S. C.

Jayaweera, K.

Jin, Z.

Johannessen, O. M.

I. Dundas, O. M. Johannessen, G. Berge, B. Heimdal, “Toxic algal bloom in Scandinavian waters, May–June, 1988,” Oceanography, 2, 9–14 (1989).

Kattawar, G. W.

Kneizys, F. X.

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Rep. AFGL-TR-86-0110, [Air Force Geophysics Laboratory (Ogden Projects, Inc.), Hanscom Air Force Base, Mass., 1986].

Land, P. E.

Merheim-Kealy, P.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Miller, J. R.

Mobley, C. D.

Morel, A.

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersmann, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

A. Morel, B. Gentili, “Diffuse reflectance of natural waters: its dependence on the sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).

Prieur, L.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Rast, M.

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Reinersmann, P.

Sathyendranath, S.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in AGARD Conf. Proc. 183 (1976).

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Rep. AFGL-TR-86-0110, [Air Force Geophysics Laboratory (Ogden Projects, Inc.), Hanscom Air Force Base, Mass., 1986].

Smith, R. C.

Sørensen, K.

R. Doerffer, K. Sørensen, J. Aiken, “MERIS: potential for coastal application,” in Proceedings of the 21st Annual Conference of the Remote Sensing Society, P. J. Curran, C. Robertson, eds. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

Stamnes, K.

Stavn, R. H.

Tassan, S.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).

Thomas, G.

G. Thomas, K. Stamnes, Radiative Transfer in Atmospheres and Oceans (Cambridge U. Press, Cambridge, UK, 1998).

Tsay, S.-C.

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).

Voss, K. J.

K. J. Voss, S. G. Ackleson, “Ocean optics revisited,” sOpt. Photon. News 7, (11) 31–36 (1996).
[CrossRef]

Wang, M. H.

Wiscombe, W.

Adv. Space Res. (1)

J. Fischer, R. Doerffer, “An inverse technique for remote detection of suspended matter, phytoplankton and yellow substance from CZCS measurements,” Adv. Space Res. 7, 21–26 (1987).
[CrossRef]

AGARD Conf. Proc. (1)

E. P. Shettle, R. W. Fenn, “Models of atmospheric aerosols and their optical properties,” in AGARD Conf. Proc. 183 (1976).

Appl. Opt. (9)

A. Morel, B. Gentili, “Diffuse reflectance of natural waters: its dependence on the sun angle as influenced by the molecular scattering contribution,” Appl. Opt. 30, 4427–4438 (1991).
[CrossRef] [PubMed]

R. C. Smith, K. S. Baker, “Optical properties of the clearest natural waters,” Appl. Opt. 20, 177–184 (1981).
[CrossRef] [PubMed]

S. Tassan, “Local algorithms using SeaWiFS data for the retrieval of phytoplankton, pigments, suspended sediment, and yellow substance in coastal waters,” Appl. Opt. 33, 2369–2378 (1994).
[CrossRef] [PubMed]

P. E. Land, J. D. Haigh, “Atmospheric correction over case 2 waters with an iterative fitting algorithm,” Appl. Opt. 35, 5443–5451 (1996).
[CrossRef] [PubMed]

H. R. Gordon, M. H. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33, 443–452 (1994).
[CrossRef] [PubMed]

S. C. Jain, J. R. Miller, “Subsurface water parameters: optimization approach to their determination from remotely sensed water color data,” Appl. Opt. 15, 886–890 (1976).
[CrossRef] [PubMed]

Z. Jin, K. Stamnes, “Radiative transfer in nonuniformly refracting layered media: atmosphere–ocean system,” Appl. Opt. 33, 431–442 (1994).
[CrossRef] [PubMed]

C. D. Mobley, B. Gentili, H. R. Gordon, Z. Jin, G. W. Kattawar, A. Morel, P. Reinersmann, K. Stamnes, R. H. Stavn, “Comparison of numerical models for computing underwater light fields,” Appl. Opt. 32, 7484–7504 (1993).
[CrossRef] [PubMed]

K. Stamnes, S.-C. Tsay, W. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
[CrossRef] [PubMed]

Backscatter (1)

J. L. Bézy, M. Rast, S. Delwart, P. Merheim-Kealy, S. Bruzzi, “The ESA medium resolution imaging spectrometer (MERIS),” Backscatter 7, 14–20 (1996).

Fisken Havet (1)

I. Fyllingen, S. R. Erga, “Risk mapping of harmful algal blooms in Norwegian ocean areas. Part 1: coast and ocean,” Fisken Havet, 4, 7–57 (1991), in Norwegian.

Int. J. Remote Sens. (1)

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sens. 10, 1373–1394 (1989).
[CrossRef]

J. Geophys. Res. (1)

R. Doerffer, J. Fischer, “Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods,” J. Geophys. Res. 99, 7457–7466 (1994).
[CrossRef]

Limnol. Oceanogr. (2)

L. Prieur, S. Sathyendranath, “An optical classification of coastal and oceanic waters based on the specific spectral absorption of phytoplankton pigments, dissolved organic matter and particulate materials,” Limnol. Oceanogr. 26, 671–689 (1981).
[CrossRef]

A. Bricaud, A. Morel, L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43–53 (1981).
[CrossRef]

Oceanography (1)

I. Dundas, O. M. Johannessen, G. Berge, B. Heimdal, “Toxic algal bloom in Scandinavian waters, May–June, 1988,” Oceanography, 2, 9–14 (1989).

Opt. Photon. News (1)

K. J. Voss, S. G. Ackleson, “Ocean optics revisited,” sOpt. Photon. News 7, (11) 31–36 (1996).
[CrossRef]

Other (8)

R. P. Brent, Algorithms for Minimization without Derivatives (Prentice-Hall, Englewood Cliffs, N.J., 1973), Chap. 7.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C, The Art of Scientific Computing (Cambridge U. Press, Cambridge, UK, 1992).

K. Stamnes, “Transfer of ultraviolet light in the atmosphere and ocean: a tutorial review,” in Solar Ultraviolet Radiation. Modelling, Measurements and Effects, C. S. Zerefos, A. F. Bais, eds., Vol. 1 of NATO Advanced Scientific Institutes Series (Springer-Verlag, Berlin, 1997), pp. 49–64.
[CrossRef]

G. P. Andersen, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, E. P. Shettle, “AFGL Atmospheric Constituent Profiles (0–120 km),” in Rep. AFGL-TR-86-0110, [Air Force Geophysics Laboratory (Ogden Projects, Inc.), Hanscom Air Force Base, Mass., 1986].

G. Thomas, K. Stamnes, Radiative Transfer in Atmospheres and Oceans (Cambridge U. Press, Cambridge, UK, 1998).

R. Doerffer, K. Sørensen, J. Aiken, “MERIS: potential for coastal application,” in Proceedings of the 21st Annual Conference of the Remote Sensing Society, P. J. Curran, C. Robertson, eds. (Remote Sensing Society, Nottingham, UK, 1995), pp. 166–175.

M. Perry, ed., “MERIS: the medium resolution imaging spectrometer,” Report SP-1184 of the MERIS Scientific Advisory Group, March1995 (European Space Agency, Munich, Germany, 1996).

P. G. Hoel, “Introduction to Mathematical Statistics (Wiley, New York, 1947).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagram of the coupled radiative transfer model for the atmosphere–ocean system. Here Δτ n , a n , and p n are the optical depth, single-scattering albedo, and phase function, respectively, of the nth layer.

Fig. 2
Fig. 2

Aerosol absorption and scattering vertical profiles given as optical depths/atmospheric layer Δτα and Δτσ.

Fig. 3
Fig. 3

Overview of some of the physical processes accounted for in the numerical simulations.

Fig. 4
Fig. 4

Effect of variation in marine constituents and aerosol layer on satellite-level radiances. Solid curve, band 1 for the MERIS sensor; dotted, dotted–dashed, and dashed curves, bands 3, 5, and 13, respectively.

Fig. 5
Fig. 5

Variation of the marine optical properties as a function of the chlorophyll-a concentration. In this example the concentrations of suspended matter and yellow substance are 0.2 m-1 and 0.0 m-1, respectively.

Fig. 6
Fig. 6

Variation of the marine optical properties as a function of the concentration of suspended matter. In this case the concentrations of chlorophyll a and yellow substance are 0.5 μg L-1 and 0.0 m-1, respectively.

Fig. 7
Fig. 7

Variation of the marine optical properties as a function of the concentration of yellow substance. In this example the concentrations of chlorophyll a and suspended matter are 0.5 μg L-1 and 0.2 m-1, respectively.

Fig. 8
Fig. 8

Variation of the asymmetry factor used in the Henyey–Greenstein phase function. In the left-hand panel the chlorophyll-a concentration is 0.5 μg L-1, and in the right-hand panel the concentration of suspended matter is 0.2 m-1.

Fig. 9
Fig. 9

Behavior of the retrieval algorithm for a systematic variation of input values. Top left-hand panel shows retrieved values of chlorophyll a (μg L-1) as a function of the input value. Corresponding plots for yellow substance (m-1), suspended matter (m-1), and the dimensionless aerosol factor are shown in top right-hand, bottom left-hand, and bottom right-hand panels, respectively. Scattering by suspended matter is assumed to be wavelength independent [n = 0 in Eq. (23)].

Fig. 10
Fig. 10

Similar plots as in Fig. 9 but now with wavelength dependence of scattering by suspended matter [n = 1 in Eq. (23)].

Fig. 11
Fig. 11

Similar plots as in Fig. 9 but with a marine optical model in which the correlation between yellow substance and chlorophyll a is ignored.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I sol τ = F 0 δ μ - μ 0 δ ϕ - ϕ 0 exp - τ / μ 0 ,
u   dI τ ,   u ,   ϕ d τ = I τ ,   u ,   ϕ - a τ 4 π 0 2 π d ϕ   - 1 1 d u p τ ,   u ,   ϕ ,   u ,   ϕ × I τ ,   u ,   ϕ - S * τ ,   u ,   ϕ ,
S * τ ,   u ,   ϕ = aF 0 4 π   p τ ,   - μ 0 ,   ϕ 0 ,   u ,   ϕ exp - τ / μ 0 .
p τ ,   u ,   ϕ ,   u ,   ϕ = m = 0 2 N - 1 2 - δ 0 m p m τ ,   u ,   u ×   cos   m ϕ - ϕ .
p m τ ,   u ,   u = l = m 2 N - 1 2 l + 1 χ l τ P l m u P l m u l - m ! l + m ! ,
χ l τ = 1 2 - 1 1 d cos   Θ P l cos   Θ p τ ,   cos   Θ .
cos   Θ = cos   θ   cos   θ + sin   θ   sin   θ   cos ϕ - ϕ .
I τ ,   u ,   ϕ = m = 0 2 N - 1   I m τ ,   u cos   m ϕ 0 - ϕ .
u   dI τ ,   u d τ = I τ ,   u - a τ 2 - 1 1 d u p τ ,   u ,   u × I τ ,   u - S * τ ,   u .
S * τ ,   u = a τ F 0 4 π   p τ ,   - μ 0 ,   u exp - τ / μ 0 .
P HG τ ,   cos   Θ = 1 - g 2 1 + g 2 - 2 g   cos   Θ 3 / 2 ,
S air * τ ,   u = a τ F 0 4 π   p τ ,   - μ 0 ,   u exp - τ / μ 0 + a τ F 0 4 π   ρ s - μ 0 ;   n rel p τ ,   μ 0 ,   u × exp - 2 τ a - τ / μ 0 ,
S o * τ ,   u = a τ F 0 4 π μ 0 μ 0 n   T s - μ 0 ,   n rel p τ ,   - μ 0 n ,   u ×   exp - τ a / μ 0 exp - τ - τ a / μ 0 n ,
u i a dI τ ,   u i a d τ = I τ ,   μ i a - a τ 2 j = - N 1 N 1   w j a p τ ,   μ j a ,   u i a × I τ ,   μ j a - S air τ ,   u i a
u i o dI τ ,   μ i o d τ = I τ ,   u i o - a τ 2 j = - N 2 N 2   w j o p τ ,   μ j o ,   u i o × I τ ,   μ j o - S o τ ,   u i o ,
I p ± τ ,   μ i a = j = 1 N 1 C - jp g - jp ± μ i a exp k jp a τ + C jp g jp ± μ i a exp - k jp a τ + U p ± τ ,   μ i a ,
I p ± τ ,   μ i o = j = 1 N 2 C - jp g - jp ± μ i o exp k jp o τ + C jp g jp ± μ i o exp - k jp o τ + U p ± τ ,   μ i o ,
α case 1 λ = α w λ + 0.06 α C * λ C 0.65 1.0 + 0.2   *   Y λ ,
Y λ = exp Γ λ - λ 0 ,
α λ = α case 1 λ + σ S λ S α S λ + α Y λ 0 exp Γ λ - λ 0 ,
σ λ = σ w λ + σ C λ + σ S λ ,
σ C λ = Λ C 0.62 λ 0 / λ ,
σ S λ S = σ λ S - σ C λ S - σ w λ S .
σ S λ = σ S λ S λ S / λ - n ,
g λ = g w σ w λ + g C σ C λ + g S σ S λ σ λ .
T n = T 0 1 - 0.5 J n / J max ,
f cost C ,   b λ S ,   a Y λ 0 ,   A s = n   | I sa n - I si n | ,
r = Σ i x i - x ¯ y i - y ¯ Σ i x i - x ¯ 2 1 / 2 Σ i y i - y ¯ 2 1 / 2 ,

Metrics