Abstract

Vertical profiles of atmospheric density and temperature obtained with the technique of solar refractive sounding can potentially be used to improve satellite solar occultation trace species retrievals by reducing the uncertainties associated with Rayleigh scattering and the temperature dependence of absorption bands. The required refraction measurements and the algorithm utilized to recover density and temperature are described. Simulations are performed to estimate the measurement accuracy that is necessary to retrieve useful meteorological soundings at stratospheric altitudes. The method is applied to data measured by the Stratospheric Aerosol and Gas Experiment (SAGE) II. Unfortunately, because of poor vertical sampling and measurement uncertainties, the meteorological profiles derived from the SAGE II data are not consistently accurate enough to improve the SAGE II estimates for the concentrations of trace species. However, the qualitatively decent results provide optimism for future development and implementation of visible refractive sounding as a tool to help improve the accuracy of trace species retrievals within solar or stellar occultation experiments, including the SAGE III program.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Russell, “Satellite solar occultation sounding of the middle atmosphere,” Pure Appl. Geophys. 118, 616–635 (1980).
    [CrossRef]
  2. A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
    [CrossRef] [PubMed]
  3. G. Fjeldbo, A. J. Kliore, V. R. Eshleman, “The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments,” Astron. J. 76, 123–140 (1971).
    [CrossRef]
  4. L. M. Jones, F. F. Fischbach, J. W. Peterson, “Satellite measurements of atmospheric structure by refraction,” Planet. Space Sci. 9, 351–352 (1962).
    [CrossRef]
  5. G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).
  6. A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).
  7. R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
    [CrossRef]
  8. E. R. Kursinski, G. A. Hajj, J. T. Schofield, K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102, 23,429–23,465 (1997).
    [CrossRef]
  9. J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).
  10. R. A. Phinney, D. C. Anderson, “On the radio occultation method for studying planetary atmospheres,” J. Geophys. Res. 73, 1819–1827 (1968).
    [CrossRef]
  11. E. L. Fleming, S. Chandra, M. R. Shoeberl, J. J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” NASA Tech. Mem. 100697 (NASA, Washington, D.C., 1985).
  12. S. V. Stanislav, S. V. Sokolovskiy, “Variations of refraction angles from observations of the Moon from space,” Appl. Opt. 33, 8402–8405 (1994).
    [CrossRef]
  13. M. E. Gorbunov, S. V. Sokolovskiy, “Remote sensing of refractivity from space for global observations of atmospheric parameters,” Report No. 119 (Max-Planck-Institut fur Meteorologie, Hamburg, 1993).
  14. W. P. Chu, M. P. McCormick, “Inversion of stratospheric aerosol and gaseous constituents from spacecraft solar extinction data in the 0.38–1.0-μm wavelength region,” Appl. Opt. 18, 1404–1413 (1979).
    [CrossRef] [PubMed]
  15. L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).
  16. M. C. Pitts, A. J. Miller, M. P. McCormick, “SAGE III algorithm theoretical basis document: temperature and pressure data products, Version 1.1,” available from http://eospso.gsfc.nasa.gov/atbd/sagetables.html (1997).
  17. M. C. Pitts, NASA, Langley Research Center, Hampton, Va. (personal communication, 1998).

1997 (1)

E. R. Kursinski, G. A. Hajj, J. T. Schofield, K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102, 23,429–23,465 (1997).
[CrossRef]

1996 (1)

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

1994 (1)

1985 (1)

L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

1982 (1)

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

1981 (1)

G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).

1980 (1)

J. M. Russell, “Satellite solar occultation sounding of the middle atmosphere,” Pure Appl. Geophys. 118, 616–635 (1980).
[CrossRef]

1979 (1)

1971 (1)

G. Fjeldbo, A. J. Kliore, V. R. Eshleman, “The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments,” Astron. J. 76, 123–140 (1971).
[CrossRef]

1968 (1)

R. A. Phinney, D. C. Anderson, “On the radio occultation method for studying planetary atmospheres,” J. Geophys. Res. 73, 1819–1827 (1968).
[CrossRef]

1965 (1)

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

1962 (1)

L. M. Jones, F. F. Fischbach, J. W. Peterson, “Satellite measurements of atmospheric structure by refraction,” Planet. Space Sci. 9, 351–352 (1962).
[CrossRef]

Anderson, D. C.

R. A. Phinney, D. C. Anderson, “On the radio occultation method for studying planetary atmospheres,” J. Geophys. Res. 73, 1819–1827 (1968).
[CrossRef]

Anderson, D. E.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Anther, R.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Barnett, J. J.

E. L. Fleming, S. Chandra, M. R. Shoeberl, J. J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” NASA Tech. Mem. 100697 (NASA, Washington, D.C., 1985).

Busingner, S.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Carbary, J.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Chandra, S.

E. L. Fleming, S. Chandra, M. R. Shoeberl, J. J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” NASA Tech. Mem. 100697 (NASA, Washington, D.C., 1985).

Chu, W. P.

DeMajistre, B.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Eshleman, V. R.

G. Fjeldbo, A. J. Kliore, V. R. Eshleman, “The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments,” Astron. J. 76, 123–140 (1971).
[CrossRef]

Exner, M.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Feng, D.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Fischbach, F. F.

L. M. Jones, F. F. Fischbach, J. W. Peterson, “Satellite measurements of atmospheric structure by refraction,” Planet. Space Sci. 9, 351–352 (1962).
[CrossRef]

Fjeldbo, G.

G. Fjeldbo, A. J. Kliore, V. R. Eshleman, “The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments,” Astron. J. 76, 123–140 (1971).
[CrossRef]

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

Fleming, E. L.

E. L. Fleming, S. Chandra, M. R. Shoeberl, J. J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” NASA Tech. Mem. 100697 (NASA, Washington, D.C., 1985).

Gorbunov, M. E.

M. E. Gorbunov, S. V. Sokolovskiy, “Remote sensing of refractivity from space for global observations of atmospheric parameters,” Report No. 119 (Max-Planck-Institut fur Meteorologie, Hamburg, 1993).

Gorvunov, M.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Grechko, G. M.

G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).

Gurvich, A. S.

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).

Guy, J. H.

L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Hajj, G. A.

E. R. Kursinski, G. A. Hajj, J. T. Schofield, K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102, 23,429–23,465 (1997).
[CrossRef]

Hardy, K.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Hardy, K. R.

E. R. Kursinski, G. A. Hajj, J. T. Schofield, K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102, 23,429–23,465 (1997).
[CrossRef]

Herman, B.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Jones, L. M.

L. M. Jones, F. F. Fischbach, J. W. Peterson, “Satellite measurements of atmospheric structure by refraction,” Planet. Space Sci. 9, 351–352 (1962).
[CrossRef]

Kan, V.

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

Kliore, A. J.

G. Fjeldbo, A. J. Kliore, V. R. Eshleman, “The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments,” Astron. J. 76, 123–140 (1971).
[CrossRef]

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

Kumar, C. K.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Kuo, Y.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Kursinski, E. R.

E. R. Kursinski, G. A. Hajj, J. T. Schofield, K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102, 23,429–23,465 (1997).
[CrossRef]

Lyakhov, V. A.

G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).

Mauldin, L. E.

L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

McCormick, M. P.

L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

W. P. Chu, M. P. McCormick, “Inversion of stratospheric aerosol and gaseous constituents from spacecraft solar extinction data in the 0.38–1.0-μm wavelength region,” Appl. Opt. 18, 1404–1413 (1979).
[CrossRef] [PubMed]

Meehan, T.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Melbourne, W.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Meng, C. I.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Morgan, M. F.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Morrison, D.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Paxton, L. J.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Peterson, J. W.

L. M. Jones, F. F. Fischbach, J. W. Peterson, “Satellite measurements of atmospheric structure by refraction,” Planet. Space Sci. 9, 351–352 (1962).
[CrossRef]

Phinney, R. A.

R. A. Phinney, D. C. Anderson, “On the radio occultation method for studying planetary atmospheres,” J. Geophys. Res. 73, 1819–1827 (1968).
[CrossRef]

Pitts, M. C.

M. C. Pitts, NASA, Langley Research Center, Hampton, Va. (personal communication, 1998).

Popov, L. I.

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

Rocken, C.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Romick, G. J.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Russell, J. M.

J. M. Russell, “Satellite solar occultation sounding of the middle atmosphere,” Pure Appl. Geophys. 118, 616–635 (1980).
[CrossRef]

Ryumin, V. V.

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

Savchenko, S. A.

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).

Schofield, J. T.

E. R. Kursinski, G. A. Hajj, J. T. Schofield, K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102, 23,429–23,465 (1997).
[CrossRef]

Schreiner, W.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Seidel, B. L.

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

Sesplaukis, T. T.

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

Shoeberl, M. R.

E. L. Fleming, S. Chandra, M. R. Shoeberl, J. J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” NASA Tech. Mem. 100697 (NASA, Washington, D.C., 1985).

Sokolovskiy, S.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Sokolovskiy, S. V.

S. V. Stanislav, S. V. Sokolovskiy, “Variations of refraction angles from observations of the Moon from space,” Appl. Opt. 33, 8402–8405 (1994).
[CrossRef]

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).

M. E. Gorbunov, S. V. Sokolovskiy, “Remote sensing of refractivity from space for global observations of atmospheric parameters,” Report No. 119 (Max-Planck-Institut fur Meteorologie, Hamburg, 1993).

Solheim, F.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Stanislav, S. V.

Sweetnam, D. N.

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

Trenberth, K.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Vaughn, W. R.

L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Vervack, R.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Ware, R.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Woiceshyn, P. M.

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

Yee, J. H.

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

Zaun, H.

L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Zou, X.

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Appl. Opt. (2)

Astron. J. (1)

G. Fjeldbo, A. J. Kliore, V. R. Eshleman, “The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments,” Astron. J. 76, 123–140 (1971).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

R. Ware, M. Exner, D. Feng, M. Gorvunov, K. Hardy, B. Herman, Y. Kuo, T. Meehan, W. Melbourne, C. Rocken, W. Schreiner, S. Sokolovskiy, F. Solheim, X. Zou, R. Anther, S. Busingner, K. Trenberth, “GPS sounding of the atmosphere from low earth orbit: preliminary results,” Bull. Am. Meteorol. Soc. 77, 19–40 (1996).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (2)

G. M. Grechko, A. S. Gurvich, V. A. Lyakhov, S. A. Savchenko, S. V. Sokolovskiy, “Results of an investigation of refraction during the third expedition on the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 17, 835–841 (1981).

A. S. Gurvich, V. Kan, L. I. Popov, V. V. Ryumin, S. A. Savchenko, S. V. Sokolovskiy, “Reconstruction of the atmosphere’s temperature profile from motion pictures of the sun and moon taken from the Salyut-6 orbiter,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 18, 1–4 (1982).

J. Geophys. Res. (2)

E. R. Kursinski, G. A. Hajj, J. T. Schofield, K. R. Hardy, “Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System,” J. Geophys. Res. 102, 23,429–23,465 (1997).
[CrossRef]

R. A. Phinney, D. C. Anderson, “On the radio occultation method for studying planetary atmospheres,” J. Geophys. Res. 73, 1819–1827 (1968).
[CrossRef]

Opt. Eng. (1)

L. E. Mauldin, H. Zaun, M. P. McCormick, J. H. Guy, W. R. Vaughn, “Stratospheric aerosol and gas experiment II instrument: a functional description,” Opt. Eng. 24, 307–312 (1985).

Planet. Space Sci. (1)

L. M. Jones, F. F. Fischbach, J. W. Peterson, “Satellite measurements of atmospheric structure by refraction,” Planet. Space Sci. 9, 351–352 (1962).
[CrossRef]

Pure Appl. Geophys. (1)

J. M. Russell, “Satellite solar occultation sounding of the middle atmosphere,” Pure Appl. Geophys. 118, 616–635 (1980).
[CrossRef]

Science (1)

A. J. Kliore, G. Fjeldbo, B. L. Seidel, D. N. Sweetnam, T. T. Sesplaukis, P. M. Woiceshyn, “Occultation experiment: results of the first direct measurement of Mars’ atmosphere and ionosphere,” Science 149, 1243–1248 (1965).
[CrossRef] [PubMed]

Other (5)

J. H. Yee, B. DeMajistre, J. Carbary, M. F. Morgan, R. Vervack, C. K. Kumar, D. Morrison, G. J. Romick, D. E. Anderson, L. J. Paxton, C. I. Meng, “Space-based remote sensing of tropospheric and stratospheric composition using stellar occultation techniques,” in Proceedings of the American Geophysical Union Fall Meeting (American Geophysical Union, Washington, D.C., 1997).

M. C. Pitts, A. J. Miller, M. P. McCormick, “SAGE III algorithm theoretical basis document: temperature and pressure data products, Version 1.1,” available from http://eospso.gsfc.nasa.gov/atbd/sagetables.html (1997).

M. C. Pitts, NASA, Langley Research Center, Hampton, Va. (personal communication, 1998).

E. L. Fleming, S. Chandra, M. R. Shoeberl, J. J. Barnett, “Monthly mean global climatology of temperature, wind, geopotential height, and pressure for 0–120 km,” NASA Tech. Mem. 100697 (NASA, Washington, D.C., 1985).

M. E. Gorbunov, S. V. Sokolovskiy, “Remote sensing of refractivity from space for global observations of atmospheric parameters,” Report No. 119 (Max-Planck-Institut fur Meteorologie, Hamburg, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Solar occultation geometry for a spherically symmetric atmosphere. The heavy solid curve represents a refracted ray path. The total refractive bending angle is denoted by γ, a is the ray impact distance, and r is the ray tangent altitude.

Fig. 2
Fig. 2

Variation of bending angle with ray impact altitude computed for a model atmosphere (solid curve) and the error in bending angle resulting from an error in the measured pointing angle of 5 μrad. Horizontal lines indicate locations where the edges of the solar image are viewed in a SAGE simulation; top edges are dashed lines, bottom edges are solid lines. Only edges viewed between 50 and 20 km are shown.

Fig. 3
Fig. 3

Position of the refracted image of the Sun as viewed from a satellite (top panel) and the corresponding unrefracted or true Sun position (bottom panel). We computed the atmospheric refraction using the climatological model for July at 10 °S. The relative view angle represents the angle γ in Fig. 1 minus some reference angle. The lengths of the horizontal chords, labeled d, are equal.

Fig. 4
Fig. 4

Temperature structure for the model atmosphere used in the simulations.

Fig. 5
Fig. 5

Error in the retrieved density that is due to a random error in measuring a pointing angle of 1.5 μrad (solid curves) and a systematic measurement error of 1.5 μrad (short dashed curves). Retrievals started at 60, 50, and 40 km. The long dashed curve in the upper left shows the error that is due to the Abel boundary uncertainty at a starting altitude of 60 km.

Fig. 6
Fig. 6

Error in retrieved temperature that is due to uncertainty in specifying the Abel boundary alone, the temperature boundary alone, and the total boundary error for inversions started at 60 and 40 km.

Fig. 7
Fig. 7

Error in retrieved temperature that is due to a random error in measuring the pointing angle of 1.5 μrad (dashed curves) and total error (solid curves), which includes measurement and boundary value uncertainties, for inversions started at 60, 50, and 40 km.

Fig. 8
Fig. 8

Error in retrieved temperature that is due to random errors in measuring the pointing angle of 1.5 μrad, systematic measurement errors of 1.5 μrad, and a random measurement error of 5 μrad with smoothing applied to the data before retrieving the temperature.

Fig. 9
Fig. 9

Simulated data-acquisition mode for a SAGE II sunset event. The dashed curves denote the top and bottom edges of the solar disk. The zigzag solid line shows the data-taking sequence. Relative time is time from the beginning of data acquisition for the event. Impact altitude is the line of sight tangent height above the Earth’s surface.

Fig. 10
Fig. 10

Comparison of the retrieved temperature profile computed from SAGE II measurements of the angular size of the solar image with the corresponding NCEP temperatures. The dashed curves indicate the estimated standard deviation of the SAGE II retrieval. The horizontal line segments represent the reported NCEP temperature uncertainties. The event date, event number for that date, and event latitude are displayed above the figure. The highest-altitude measurement of refractive bending was taken at 33.5 km. NMC, National Meteorological Center.

Fig. 11
Fig. 11

Same as Fig. 10 except for a different SAGE II event. The highest-altitude measurement of refractive bending was taken at 44.8 km. NMC, National Meteorological Center.

Fig. 12
Fig. 12

Average and standard deviation of the temperature difference (inversion minus NCEP) at eight pressure levels. Solid curves are for inversions started at the altitude of the first measurement of bending angle below 45 km, and dashed curves are for the first measurement below 35 km.

Tables (2)

Tables Icon

Table 1 Maximum Allowable Uncertainty in the Measured Pointing Angle in Microradions

Tables Icon

Table 2 Average and Standard Deviation of the Measured Sun Sizes in Milliradians for High-Altitude Scans (bottom edge impact altitude greater than 60 km), July 1988

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N = μ - 1 × 10 6 77.6 P / T = K ρ ,
α a 0 = 2 a   r 0 d μ μ d r d r μ r 2 - a 0 2 1 / 2 ,
μ r 0 = exp 1 π a 0 α a a 2 - a 0 2 1 / 2 d a .
α e = γ e + d a d γ   γ e d α d a ,
S = X α
E x = SE m S T

Metrics