Abstract

The performance of mean velocity estimators is determined by computer simulations for solid-state coherent Doppler lidar measurements of wind fields at a cloud interface with deterministic profiles of velocity and aerosol backscatter. Performance of the velocity estimates is characterized by the standard deviation about the estimated mean and the bias referenced to the input velocity. A new class of estimators are required for cloud conditions, as traditional techniques result in biased estimates. We consider data with high signal energy that produces negligible random outliers.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
    [CrossRef]
  2. W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
    [CrossRef]
  3. R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
    [CrossRef]
  4. M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
    [CrossRef] [PubMed]
  5. T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992).
    [CrossRef]
  6. R. L. Schwiesow, M. P. Spowart, “The NCAR airborne infrared lidar system: status and applications,” J. Atmos. Oceanic Technol. 13, 4–15 (1996).
    [CrossRef]
  7. M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
    [CrossRef] [PubMed]
  8. S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
    [CrossRef] [PubMed]
  9. R. Targ, M. J. Kavaya, R. M. Huffaker, R. L. Bowles, “Coherent lidar airborne wind shear sensor: performance evaluation,” Appl. Opt. 30, 2013–2026 (1991).
    [CrossRef] [PubMed]
  10. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
    [CrossRef]
  11. R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
    [CrossRef]
  12. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
    [CrossRef]
  13. B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993).
    [CrossRef]
  14. R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
    [CrossRef]
  15. P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995).
    [CrossRef] [PubMed]
  16. R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
    [CrossRef]
  17. B. J. Rye, “Spectral correlation of atmospheric lidar returns with range dependent backscatter,” J. Opt. Soc. Am. A 7, 2199–2207 (1990).
    [CrossRef]
  18. R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Oceanic Technol. 14, 54–75 (1997).
    [CrossRef]
  19. B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997).
    [CrossRef]
  20. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  21. S. W. Henderson, Coherent Technologies, Incorporated, Lafayette, Colo. 80026 (personal communication, 1997).
  22. S. R. Pal, R. Pribluda, A. I. Carswell, “Lidar measurements of cloud-tracked winds,” J. Appl. Meteorol. 33, 35–44 (1994).
    [CrossRef]
  23. H. Reichmann, Cross Country Soaring (Soaring Society of America, Hobbs, N.M., 1994).
  24. J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
    [CrossRef]
  25. R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994).
    [CrossRef] [PubMed]
  26. M. D. Guasta, M. Morandi, L. Stefanutti, “Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians,” Appl. Opt. 34, 3449–3456 (1995).
    [CrossRef] [PubMed]
  27. M. D. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993).
  28. L. R. Bissonnette, “Multiple scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995).
    [CrossRef] [PubMed]
  29. R. B. Skull, An Introduction to Boundary Layer Meteorology (Academic, New York, 1988).
  30. S. R. Pal, W. Steinbrecht, A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992).
    [CrossRef] [PubMed]
  31. J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57, 1408–1418 (1969).
    [CrossRef]
  32. J. R. Anderson, “High performance velocity estimators for coherent laser radars,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), 216–218.
  33. B. T. Lottman, R. G. Frehlich, “Evaluation of the mv (capon) coherent Doppler lidar velocity estimator,” NASA Contract. Rep. 4763 (Marshall Space Flight Center, Huntsville, Ala.1997).
  34. G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. 4, 367–373 (1987).
    [CrossRef]
  35. J. M. Geist, “Computer generation of correlated Gaussian random variables,” Proc. IEEE 67, 862–863 (1979).
    [CrossRef]
  36. C. J. Grund, NOAA Environmental Technology Laboratory, Boulder, Colo. 80303 (personal communication, 1997).

1998 (1)

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

1997 (2)

R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Oceanic Technol. 14, 54–75 (1997).
[CrossRef]

B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997).
[CrossRef]

1996 (2)

R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
[CrossRef]

R. L. Schwiesow, M. P. Spowart, “The NCAR airborne infrared lidar system: status and applications,” J. Atmos. Oceanic Technol. 13, 4–15 (1996).
[CrossRef]

1995 (3)

1994 (4)

S. R. Pal, R. Pribluda, A. I. Carswell, “Lidar measurements of cloud-tracked winds,” J. Appl. Meteorol. 33, 35–44 (1994).
[CrossRef]

R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994).
[CrossRef] [PubMed]

R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[CrossRef]

1993 (4)

M. D. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993).

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993).
[CrossRef]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

1992 (2)

T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992).
[CrossRef]

S. R. Pal, W. Steinbrecht, A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992).
[CrossRef] [PubMed]

1991 (3)

1990 (2)

1989 (3)

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

1987 (1)

G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. 4, 367–373 (1987).
[CrossRef]

1986 (1)

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

1979 (1)

J. M. Geist, “Computer generation of correlated Gaussian random variables,” Proc. IEEE 67, 862–863 (1979).
[CrossRef]

1969 (1)

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57, 1408–1418 (1969).
[CrossRef]

Ancellet, G. M.

G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. 4, 367–373 (1987).
[CrossRef]

Anderson, J. R.

J. R. Anderson, “High performance velocity estimators for coherent laser radars,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), 216–218.

Banta, R.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Bilbro, J. W.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Bissonnette, L. R.

Bowles, R. L.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Capon, J.

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57, 1408–1418 (1969).
[CrossRef]

Carswell, A. I.

Cupp, R. E.

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Cutten, D.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Dabas, A.

DiMarzio, C.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Eberhard, W. L.

T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992).
[CrossRef]

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Fitzjarrald, D.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Flamant, P. H.

Frehlich, R. G.

B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997).
[CrossRef]

R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Oceanic Technol. 14, 54–75 (1997).
[CrossRef]

R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
[CrossRef]

R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994).
[CrossRef] [PubMed]

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[CrossRef]

B. T. Lottman, R. G. Frehlich, “Evaluation of the mv (capon) coherent Doppler lidar velocity estimator,” NASA Contract. Rep. 4763 (Marshall Space Flight Center, Huntsville, Ala.1997).

Gal-chen, T.

T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992).
[CrossRef]

Geist, J. M.

J. M. Geist, “Computer generation of correlated Gaussian random variables,” Proc. IEEE 67, 862–863 (1979).
[CrossRef]

Grund, C. J.

C. J. Grund, NOAA Environmental Technology Laboratory, Boulder, Colo. 80303 (personal communication, 1997).

Guasta, M. D.

M. D. Guasta, M. Morandi, L. Stefanutti, “Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians,” Appl. Opt. 34, 3449–3456 (1995).
[CrossRef] [PubMed]

M. D. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993).

Hale, C. P.

Hannon, S.

R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Hardesty, R. M.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

Healy, K. R.

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

Henderson, S.

R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

S. W. Henderson, C. P. Hale, J. R. Magee, M. J. Kavaya, A. V. Huffaker, “Eye-safe coherent laser radar system at 2.1 μm using Tm,Ho:YAG lasers,” Opt. Lett. 16, 773–775 (1991).
[CrossRef] [PubMed]

M. J. Kavaya, S. W. Henderson, J. R. Magee, C. P. Hale, R. M. Huffaker, “Remote wind profiling with a solid-state Nd:YAG coherent lidar system,” Opt. Lett. 14, 776–778 (1989).
[CrossRef] [PubMed]

S. W. Henderson, Coherent Technologies, Incorporated, Lafayette, Colo. 80026 (personal communication, 1997).

Howell, J.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Huffaker, A. V.

Huffaker, R. M.

Johnson, S.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Jones, W.

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

Kavaya, M. J.

Lottman, B. T.

B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997).
[CrossRef]

B. T. Lottman, R. G. Frehlich, “Evaluation of the mv (capon) coherent Doppler lidar velocity estimator,” NASA Contract. Rep. 4763 (Marshall Space Flight Center, Huntsville, Ala.1997).

Magee, J. R.

Menzies, R. T.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. 4, 367–373 (1987).
[CrossRef]

Morandi, M.

M. D. Guasta, M. Morandi, L. Stefanutti, “Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians,” Appl. Opt. 34, 3449–3456 (1995).
[CrossRef] [PubMed]

M. D. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993).

Olivier, L.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Pal, S. R.

Post, M. J.

Pribluda, R.

S. R. Pal, R. Pribluda, A. I. Carswell, “Lidar measurements of cloud-tracked winds,” J. Appl. Meteorol. 33, 35–44 (1994).
[CrossRef]

Reichmann, H.

H. Reichmann, Cross Country Soaring (Soaring Society of America, Hobbs, N.M., 1994).

Rothermel, J.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Rye, B. J.

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

B. J. Rye, “Spectral correlation of atmospheric lidar returns with range dependent backscatter,” J. Opt. Soc. Am. A 7, 2199–2207 (1990).
[CrossRef]

Salamitou, P.

Sassen, K.

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

Schwiesow, R. L.

R. L. Schwiesow, M. P. Spowart, “The NCAR airborne infrared lidar system: status and applications,” J. Atmos. Oceanic Technol. 13, 4–15 (1996).
[CrossRef]

Skull, R. B.

R. B. Skull, An Introduction to Boundary Layer Meteorology (Academic, New York, 1988).

Spowart, M. P.

R. L. Schwiesow, M. P. Spowart, “The NCAR airborne infrared lidar system: status and applications,” J. Atmos. Oceanic Technol. 13, 4–15 (1996).
[CrossRef]

Stefanutti, L.

M. D. Guasta, M. Morandi, L. Stefanutti, “Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians,” Appl. Opt. 34, 3449–3456 (1995).
[CrossRef] [PubMed]

M. D. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993).

Steinbrecht, W.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Targ, R.

Tratt, D.

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

Xu, M.

T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992).
[CrossRef]

Yadlowsky, M. J.

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[CrossRef]

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

Appl. Opt. (9)

J. W. Bilbro, C. DiMarzio, D. Fitzjarrald, S. Johnson, W. Jones, “Airborne Doppler lidar measurements,” Appl. Opt. 25, 2952–2960 (1986).
[CrossRef]

M. J. Post, R. E. Cupp, “Optimizing a pulsed Doppler lidar,” Appl. Opt. 29, 4145–4158 (1990).
[CrossRef] [PubMed]

R. Targ, M. J. Kavaya, R. M. Huffaker, R. L. Bowles, “Coherent lidar airborne wind shear sensor: performance evaluation,” Appl. Opt. 30, 2013–2026 (1991).
[CrossRef] [PubMed]

S. R. Pal, W. Steinbrecht, A. I. Carswell, “Automated method for lidar determination of cloud-base height and vertical extent,” Appl. Opt. 31, 1488–1494 (1992).
[CrossRef] [PubMed]

R. G. Frehlich, “Coherent Doppler lidar signal covariance including wind shear and wind turbulence,” Appl. Opt. 33, 6472–6481 (1994).
[CrossRef] [PubMed]

B. T. Lottman, R. G. Frehlich, “Evaluation of coherent Doppler lidar velocity estimators in nonstationary regimes,” Appl. Opt. 36, 7906–7918 (1997).
[CrossRef]

P. Salamitou, A. Dabas, P. H. Flamant, “Simulation in the time domain for heterodyne coherent laser radar,” Appl. Opt. 34, 499–506 (1995).
[CrossRef] [PubMed]

M. D. Guasta, M. Morandi, L. Stefanutti, “Parameterization of cloud lidar backscattering profiles by means of asymmetrical Gaussians,” Appl. Opt. 34, 3449–3456 (1995).
[CrossRef] [PubMed]

L. R. Bissonnette, “Multiple scattered aerosol lidar returns: inversion method and comparison with in situ measurements,” Appl. Opt. 34, 6959–6975 (1995).
[CrossRef] [PubMed]

Bull. Am. Meteorol. Soc. (2)

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

J. Rothermel, D. Cutten, R. M. Hardesty, R. T. Menzies, J. Howell, S. Johnson, D. Tratt, L. Olivier, R. Banta, “The multisensor airborne coherent atmospheric wind sensor,” Bull. Am. Meteorol. Soc. 79, 581–599 (1998).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing (3)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sensing 31, 4–15 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. I. Spectral accumulation and the Cramer-Rao lower bound,” IEEE Trans. Geosci. Remote Sensing 31, 16–27 (1993).
[CrossRef]

B. J. Rye, R. M. Hardesty, “Discrete spectral peak estimation in incoherent backscatter heterodyne lidar. II. Correlogram accumulation,” IEEE Trans. Geosci. Remote Sensing 31, 28–35 (1993).
[CrossRef]

J. Appl. Meteorol. (1)

S. R. Pal, R. Pribluda, A. I. Carswell, “Lidar measurements of cloud-tracked winds,” J. Appl. Meteorol. 33, 35–44 (1994).
[CrossRef]

J. Atmos. Oceanic Technol. (6)

R. G. Frehlich, S. Hannon, S. Henderson, “Performance of a 2-μm coherent Doppler lidar for wind measurements,” J. Atmos. Oceanic Technol. 11, 1517–1528 (1994).
[CrossRef]

R. G. Frehlich, M. J. Yadlowsky, “Performance of mean frequency estimators for Doppler radar and lidar,” J. Atmos. Oceanic Technol. 11, 1217–1230 (1994).
[CrossRef]

R. G. Frehlich, “Simulation of coherent Doppler lidar performance in the weak signal regime,” J. Atmos. Oceanic Technol. 13, 646–658 (1996).
[CrossRef]

R. G. Frehlich, “Effects of wind turbulence on coherent Doppler lidar performance,” J. Atmos. Oceanic Technol. 14, 54–75 (1997).
[CrossRef]

W. L. Eberhard, R. E. Cupp, K. R. Healy, “Doppler lidar measurements of profiles of turbulence and momentum flux,” J. Atmos. Oceanic Technol. 6, 809–819 (1989).
[CrossRef]

R. L. Schwiesow, M. P. Spowart, “The NCAR airborne infrared lidar system: status and applications,” J. Atmos. Oceanic Technol. 13, 4–15 (1996).
[CrossRef]

J. Geophys. Res. (2)

T. Gal-chen, M. Xu, W. L. Eberhard, “Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data,” J. Geophys. Res. 97, 409–418 (1992).
[CrossRef]

M. D. Guasta, M. Morandi, L. Stefanutti, “One year of cloud lidar data from Dumont d’Urville (Antarctica). 1. General overview of geometrical and optical properties,” J. Geophys. Res. 98, 18,575–18,587 (1993).

J. Opt. Soc. Am. (1)

G. M. Ancellet, R. T. Menzies, “Atmospheric correlation-time measurements and effects on coherent Doppler lidar,” J. Opt. Soc. Am. 4, 367–373 (1987).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (2)

Proc. IEEE (3)

J. M. Geist, “Computer generation of correlated Gaussian random variables,” Proc. IEEE 67, 862–863 (1979).
[CrossRef]

J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proc. IEEE 57, 1408–1418 (1969).
[CrossRef]

R. T. Menzies, R. M. Hardesty, “Coherent Doppler lidar for measurements of wind fields,” Proc. IEEE 77, 449–462 (1989).
[CrossRef]

Other (6)

R. B. Skull, An Introduction to Boundary Layer Meteorology (Academic, New York, 1988).

H. Reichmann, Cross Country Soaring (Soaring Society of America, Hobbs, N.M., 1994).

S. W. Henderson, Coherent Technologies, Incorporated, Lafayette, Colo. 80026 (personal communication, 1997).

J. R. Anderson, “High performance velocity estimators for coherent laser radars,” in Coherent Laser Radar: Technology and Applications, Vol. 12 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), 216–218.

B. T. Lottman, R. G. Frehlich, “Evaluation of the mv (capon) coherent Doppler lidar velocity estimator,” NASA Contract. Rep. 4763 (Marshall Space Flight Center, Huntsville, Ala.1997).

C. J. Grund, NOAA Environmental Technology Laboratory, Boulder, Colo. 80303 (personal communication, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Examples of velocity and system response profiles for an optically thick cloud. The range weighting function |A L (t - 2r/ c)|2/|A L (0)|2 is for a pulse at t = 6.58 μs and t = 6.74 μs, which corresponds to the first and last data points of a 24-m range gate. System response profiles are denoted as case 1, solid curve; case 2, dotted curve; case 3, dashed curve (see Table 1).

Fig. 2
Fig. 2

Examples of velocity and system response profiles for an optically thin cloud (i.e., the cloud is penetrated by the lidar pulse), followed immediately by an optically thick cloud. The range weighting function |A L (t - 2r/ c)|2/|A L (0)|2 is for a pulse at t = 6.58 μs and t = 6.74 μs, which corresponds to the first and last data points of a 24-m range gate. System response profiles are denoted case 4, solid curve and case 5, dotted curve (see Table 1).

Fig. 3
Fig. 3

Simulated lidar signal (real for MSE estimators), MSE 3-D velocity estimates v for an optically thick cloud with case 3 (see Fig. 1 and Table 1) for range gates centered at range r with corresponding system response estimates ( SNR ¯ , ∊̂). The input velocity profile is shown as the solid curve. The pulse accumulation per estimate is denoted by N. Estimates are produced with a sliding range gate that results in correlated error, as shown by the split-feature estimates.

Fig. 4
Fig. 4

MLC and MSE 3-D velocity estimates v for an optically thick cloud with case 3 (see Fig. 1 and Table 1) for range gates centered at range r with corresponding system response estimates ( SNR ¯ , ∊̂). The input velocity profile is shown as a solid curve. The pulse accumulation per estimate is denoted by N. Estimates were produced with contiguous sections of data.

Fig. 5
Fig. 5

Input velocity model v, estimator error g, and bias Δv versus range gates centered at range r for an optically thick cloud with case 1 for the input system response profile (see Fig. 1 and Table 1).

Fig. 6
Fig. 6

Same as Fig. 5, except for an optically thick cloud with case 2.

Fig. 7
Fig. 7

Same as Fig. 5, except for an optically thick cloud with case 3.

Fig. 8
Fig. 8

Input velocity model v, estimator error g, and bias Δv versus range gates centered at range r for an optically thin then optically thick cloud with case 4 for the input system response profile (see Fig. 2 and Table 1).

Fig. 9
Fig. 9

Same as Fig. 8, except for an optically thin then optically thick cloud with case 5.

Fig. 10
Fig. 10

Example of a slowly varying velocity profile and an optically thick cloud with a dense (i.e., sharp) interface with case 6 parameters in Table 1. The range weighting function |A L (t - 2r/ c)|2/|A L (0)|2 is for a pulse at t = 6.58 μs and t = 6.74 μs, which corresponds to the first and last data points of a 24-m range gate.

Fig. 11
Fig. 11

Input velocity model v, estimator error g, and bias Δv versus range gates centered at range r for an optically thick cloud with a dense cloud interface or case 6 for the input system response profile (see Fig. 10 and Table 1).

Tables (1)

Tables Icon

Table 1 Parameters for the System Response and Velocity Profiles for Optically Thicka and Optically Thin then Optically Thickb Clouds

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

z t = s t + n t ,
R S t 1 ,   t 2 = s t 1 s * t 2 a = U L η Q h ν B × 0   H r A L t 1 - 2 r c A L * t 2 - 2 r c × exp 2 π i t 1 - t 2 Δ f × exp - 4 π λ   i t 1 - t 2 v r d r ,
H r = K r β r A R r 2   T T η H r ,
SNR r 0 = R S 2 r 0 / c ,   2 r 0 / c = η Q cU L 2 hvB   H r 0 ,
H c = SNR c K s / U L ,
K s = 2 hvB / η Q c
A L t = 2 ln   2 1 / 4 π 1 / 4 Δ t 1 / 2   exp - 2 t 2   ln   2 Δ t 2 ,
P out t = P 0   exp - 4   ln   2   t 2 Δ t 2 ,
Δ r = c / 2 Δ t
Δ p = c / 2 T obs .
w = ln   2 / 2   π Δ t ,
w v = λ w / 2 .
f N = 1 / T s .
Φ = SNR × M ,
Ω = wT obs 0.1874 Δ p / Δ r ,
H r / H c = 1 + a 2   exp ln a 2 a 3 + a 4 - r 2 / a 4 2 , r a 3 + a 4 , 1 + a 2   exp - ln a 2   | a 3 + a 4 - r | / σ D , r > a 3 + a 4 ,
v ( r ) = { 2   , r < a 3 a 7 , 2 { 1 1 ( r a 3 ) 2 / a 7 2 [ 1 + 2 ( r a 3 ) 2 / a 7 2 ] 3 / 2 }   , a 3 a 7 r < a 3 , 4 { 1 1 ( r a 3 ) 2 / a 8 2 [ 1 + 2 ( r a 3 ) 2 / a 8 2 ] 3 / 2 }   , a 3 r < a 3 + a 8 , 4   , r a 3 + a 8 ,
H r / H c = 1 + a 2   exp ln a 2 a 3 + a 4 - r 2 / a 4 2 , a 2 , 1 + a 2   exp - ln a 2   | a 3 + a 4 + a 5 - r | / σ D , r a 3 + a 4 , a 3 + a 4 < r < a 3 + a 4 + a 5 , r > a 3 + a 4 + a 5 ,
R Z kT s ,   jT s = z kT s z * jT s , = R S kT s ,   jT s + δ k , j ,
R ˆ Z kT s ,   jT s = 1 N i = 1 N   z i kTs z i * lTs ,
H r = H r 0 1 + 2 Δ p r - r 0 ,
SNR ¯ = 1 M k = 1 M R ˆ Z kT s ,   kT s - 1
H ˆ r 0 = K s U L SNR ¯ .

Metrics