Abstract

Molding and direct-polymerization techniques are used for the fabrication of holographic materials based on dye-doped poly(methyl methacrylate). The thickness of the samples obtained ranges from several micrometers to several millimeters. Pump-signal cross modulation is studied experimentally, and photophysical mechanisms responsible for refractive-index and absorption changes are discussed. Self-developing intensity and polarization holographic recording capability, strong anisotropy of diffraction, and high angular selectivity are demonstrated in thick samples.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Sincerbox, ed., Selected Papers on Holographic Storage, Vol. MS95 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1994).
  2. T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994);Y. Frauel, T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997).
    [CrossRef]
  3. P. Günter, J. P. Huignard, eds., Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1989), Vol. 61; P. Günter, J. P. Huignard, eds., Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin, 1989), Vol. 62.
  4. P. Yeh, C. Gu, eds., Landmark Papers on Photorefractive Nonlinear Optics (World Scientific, Singapore, 1995).
  5. V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
    [CrossRef]
  6. R. A. Lessard, ed., Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, Vol. 2042 of SPIE Proceedings (SPIE, Bellingham, Wash., 1994).
  7. R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, San Diego, Calif., 1971).
  8. V. P. Pham, T. V. Galstyan, A. Granger, R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. (special issue) 36(1B), 429–438 (1997).
  9. H. Back, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index changes in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996).
    [CrossRef]
  10. P. Wu, W. Chen, X. Gong, G. Zhang, G. Tang, “Red-band holographic storage in azo dye sensitized by noncoherent light,” Opt. Lett. 21, 429–431 (1996).
    [CrossRef] [PubMed]
  11. Z. Sekkat, W. Knoll, “Photorefractive organic thin films in the light of bound electromagnetic waves,” in Advances in Photochemistry, D. Neckers, D. H. Volman, G. von Bünau, eds. (Wiley, New York, 1997), Vol. 22.
    [CrossRef]
  12. H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, pp. 119–141.
  13. V. Galstyan, V. Drnoyan, S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52–58 (1996).
    [CrossRef]
  14. M. Dumont, “Photoinduced orientational order in dye-doped amorphous polymeric films,” Mol. Cryst. Liq. Cryst. 282, 437–450 (1996);M. Dumont, S. Hosotte, G. Froc, Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 2–13 (1994).
    [CrossRef]
  15. P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1995).
    [CrossRef]
  16. B. Saad, M. M. Denariez-Roberge, T. V. Galstyan, “Diffusion of photoexcited azo dyes in a liquid-crystal host,” Opt. Lett. 23, 727–729 (1998).
    [CrossRef]
  17. The authors are preparing the following paper for publication: “Fabrication of azo-dye-doped thick films by molding and polymerization techniques.”

1998 (1)

1997 (1)

V. P. Pham, T. V. Galstyan, A. Granger, R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. (special issue) 36(1B), 429–438 (1997).

1996 (4)

H. Back, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index changes in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996).
[CrossRef]

P. Wu, W. Chen, X. Gong, G. Zhang, G. Tang, “Red-band holographic storage in azo dye sensitized by noncoherent light,” Opt. Lett. 21, 429–431 (1996).
[CrossRef] [PubMed]

V. Galstyan, V. Drnoyan, S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52–58 (1996).
[CrossRef]

M. Dumont, “Photoinduced orientational order in dye-doped amorphous polymeric films,” Mol. Cryst. Liq. Cryst. 282, 437–450 (1996);M. Dumont, S. Hosotte, G. Froc, Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 2–13 (1994).
[CrossRef]

1995 (2)

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1995).
[CrossRef]

V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
[CrossRef]

1994 (1)

T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994);Y. Frauel, T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997).
[CrossRef]

Anderle, K.

H. Back, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index changes in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996).
[CrossRef]

Arakelian, S. M.

V. Galstyan, V. Drnoyan, S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52–58 (1996).
[CrossRef]

Back, H.

H. Back, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index changes in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996).
[CrossRef]

Bornengo, G.

V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
[CrossRef]

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, San Diego, Calif., 1971).

Chen, W.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, San Diego, Calif., 1971).

Denariez-Roberge, M. M.

Drnoyan, V.

V. Galstyan, V. Drnoyan, S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52–58 (1996).
[CrossRef]

Dumont, M.

M. Dumont, “Photoinduced orientational order in dye-doped amorphous polymeric films,” Mol. Cryst. Liq. Cryst. 282, 437–450 (1996);M. Dumont, S. Hosotte, G. Froc, Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 2–13 (1994).
[CrossRef]

Fiorini, C.

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1995).
[CrossRef]

Fuhrmann, Th.

H. Back, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index changes in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996).
[CrossRef]

Galstyan, T. V.

B. Saad, M. M. Denariez-Roberge, T. V. Galstyan, “Diffusion of photoexcited azo dyes in a liquid-crystal host,” Opt. Lett. 23, 727–729 (1998).
[CrossRef]

V. P. Pham, T. V. Galstyan, A. Granger, R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. (special issue) 36(1B), 429–438 (1997).

T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994);Y. Frauel, T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997).
[CrossRef]

Galstyan, V.

V. Galstyan, V. Drnoyan, S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52–58 (1996).
[CrossRef]

Gong, X.

Granger, A.

V. P. Pham, T. V. Galstyan, A. Granger, R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. (special issue) 36(1B), 429–438 (1997).

Knoll, W.

Z. Sekkat, W. Knoll, “Photorefractive organic thin films in the light of bound electromagnetic waves,” in Advances in Photochemistry, D. Neckers, D. H. Volman, G. von Bünau, eds. (Wiley, New York, 1997), Vol. 22.
[CrossRef]

Lefin, P.

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1995).
[CrossRef]

Lessard, R. A.

V. P. Pham, T. V. Galstyan, A. Granger, R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. (special issue) 36(1B), 429–438 (1997).

V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, San Diego, Calif., 1971).

Manivannan, G.

V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
[CrossRef]

Nunzi, J. M.

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1995).
[CrossRef]

Pauliat, G.

T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994);Y. Frauel, T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997).
[CrossRef]

Pham, V. P.

V. P. Pham, T. V. Galstyan, A. Granger, R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. (special issue) 36(1B), 429–438 (1997).

V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
[CrossRef]

Po, R.

V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
[CrossRef]

Rau, H.

H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, pp. 119–141.

Roosen, G.

T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994);Y. Frauel, T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997).
[CrossRef]

Saad, B.

Sekkat, Z.

Z. Sekkat, W. Knoll, “Photorefractive organic thin films in the light of bound electromagnetic waves,” in Advances in Photochemistry, D. Neckers, D. H. Volman, G. von Bünau, eds. (Wiley, New York, 1997), Vol. 22.
[CrossRef]

Tang, G.

Villing, A.

T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994);Y. Frauel, T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997).
[CrossRef]

Wendorff, J. H.

H. Back, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index changes in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996).
[CrossRef]

Wu, P.

Zhang, G.

Appl. Phys. A (1)

V. P. Pham, G. Manivannan, R. A. Lessard, G. Bornengo, R. Po, “New azo-dye-doped polymer systems as dynamic holographic recording media,” Appl. Phys. A 60, 239–242 (1995);T. Kardinahl, H. Franke, “Photoinduced refractive-index changes in fulgide-doped PMMA films,” Appl. Phys. A 61, 23–27 (1995).
[CrossRef]

J. Phys. Chem. (1)

H. Back, K. Anderle, Th. Fuhrmann, J. H. Wendorff, “Biphoton-induced refractive index changes in 4-amino-4′-nitroazobenzene/polycarbonate,” J. Phys. Chem. 100, 4135–4140 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

V. P. Pham, T. V. Galstyan, A. Granger, R. A. Lessard, “Novel azo-dye doped poly(methyl methacrylate) films as optical data storage media,” Jpn. J. Appl. Phys. (special issue) 36(1B), 429–438 (1997).

Mol. Cryst. Liq. Cryst. (1)

M. Dumont, “Photoinduced orientational order in dye-doped amorphous polymeric films,” Mol. Cryst. Liq. Cryst. 282, 437–450 (1996);M. Dumont, S. Hosotte, G. Froc, Z. Sekkat, “Orientational manipulation of chromophores through photoisomerization,” in Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, R. A. Lessard, ed., Proc. SPIE2042, 2–13 (1994).
[CrossRef]

Opt. Commun. (1)

T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Adaptive photorefractive neurons for self-organizing networks,” Opt. Commun. 109, 35–42 (1994);Y. Frauel, T. V. Galstyan, G. Pauliat, A. Villing, G. Roosen, “Topological map from a photorefractive self-organizing neural network,” Opt. Commun. 135, 179–188 (1997).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

P. Lefin, C. Fiorini, J. M. Nunzi, “Anisotropy of the photoinduced translation diffusion of azo-dyes,” Opt. Mater. 9, 323–328 (1995).
[CrossRef]

Phys. Lett. A (1)

V. Galstyan, V. Drnoyan, S. M. Arakelian, “Self-induced oscillations and asymmetry of the light angular spectrum in a dye doped nematic,” Phys. Lett. A 217, 52–58 (1996).
[CrossRef]

Other (8)

The authors are preparing the following paper for publication: “Fabrication of azo-dye-doped thick films by molding and polymerization techniques.”

G. T. Sincerbox, ed., Selected Papers on Holographic Storage, Vol. MS95 of SPIE Milestone Series (SPIE, Bellingham, Wash., 1994).

Z. Sekkat, W. Knoll, “Photorefractive organic thin films in the light of bound electromagnetic waves,” in Advances in Photochemistry, D. Neckers, D. H. Volman, G. von Bünau, eds. (Wiley, New York, 1997), Vol. 22.
[CrossRef]

H. Rau, “Photoisomerization of azobenzenes,” in Photochemistry and Photophysics, J. F. Rabek, ed. (CRC, Boca Raton, Fla., 1990), Vol. 2, pp. 119–141.

P. Günter, J. P. Huignard, eds., Photorefractive Materials and Their Applications I (Springer-Verlag, Berlin, 1989), Vol. 61; P. Günter, J. P. Huignard, eds., Photorefractive Materials and Their Applications II (Springer-Verlag, Berlin, 1989), Vol. 62.

P. Yeh, C. Gu, eds., Landmark Papers on Photorefractive Nonlinear Optics (World Scientific, Singapore, 1995).

R. A. Lessard, ed., Photopolymers and Applications in Holography, Optical Data Storage, Optical Sensors, and Interconnects, Vol. 2042 of SPIE Proceedings (SPIE, Bellingham, Wash., 1994).

R. J. Collier, C. B. Burckhardt, L. H. Lin, Optical Holography (Academic, San Diego, Calif., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) DR1 dye used in our experiment. (b) Absorption spectrum of the DR1 dye in the PMMA matrix obtained by use of the polymerization technique.

Fig. 2
Fig. 2

Experimental setup for the holographic characterization of PP samples: E 1 and E 2, writing beams from a cw argon-ion laser operating at 488 nm; β, cross angle (10° in air); λ/2, half-wave plate; BS, beam splitter; M, mirror; f-f, 4f system; F-F, 4F system; D, diaphragm; PD, photodetector.

Fig. 3
Fig. 3

Transmission of a plane-polarized probe beam with an intensity of I p = 2.5 mW/cm2 through the DR1–PMMA polymer sample, obtained by use of polymerization, under illumination by a plane-polarized excitation beam of I e = 930 mW/cm2 intensity when (a) the polarizations of the beams are perpendicular and (b) the polarizations of the beams are parallel.

Fig. 4
Fig. 4

Diffraction signal of the probe beam for a VR polarization grating. The intensities of the writing beams are I 1 = I 2 = 170 mW/cm2. The diffraction efficiency achieved in the steady-state excitation regime is 0.38%.

Fig. 5
Fig. 5

Diffraction of the probe beam for a SR intensity grating. The filled circles correspond to parallel polarization and the open squares to perpendicular polarization of the probe beam with respect to the polarization of the excitation beam. The intensities of the writing beams are I 1 = I 2 = 170 mW/cm2. The diffraction efficiency achieved in the steady-state excitation regime is 0.23%.

Fig. 6
Fig. 6

Angular selectivity for samples obtained by use of the polymerization and the gravity-deposition techniques.

Metrics