Abstract

A photorefractive incoherent-to-coherent optical converter (PICOC) is demonstrated; conversion is accomplished by anisotropic self-diffraction in BaTiO3. The setup of the PICOC is easy, and only two writing beams are required. The diffraction efficiency reaches 50%, and the resolution is 22 line pairs (lp)/mm in a typical-size crystal. Further, the resolution reaches 40 lp/mm when a BaTiO3:Rh crystal of thickness 1.2 mm is used, and the diffraction efficiency is as high as 51%. The resolution of the PICOC can be increased effectively by reduction of the crystal thickness with no penalty for low diffraction efficiency.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. I. Fundamental Phenomena (Springer-Verlag, New York, 1988).
  2. J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. II. Applications (Springer-Verlag, New York, 1989).
  3. A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
    [CrossRef]
  4. A. A. Kamshilin, M. Petrov, “Holographic image conversion in a Bi12SiO2 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).
  5. Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3367 (1983).
    [CrossRef] [PubMed]
  6. E. Voit, P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987).
    [CrossRef] [PubMed]
  7. E. J. Sharp, G. L. Wood, W. W. Clark, G. J. Salamo, R. R. Neurgaonkar, “Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator,” Opt. Lett. 17, 207–209 (1992).
    [CrossRef] [PubMed]
  8. J. Ma, L. Liu, S. Wu, Z. Wang, L. Xu, “Grating-encoded multichannel photorefractive incoherent-to-coherent optical conversion,” Opt. Lett. 14, 572–574 (1989).
    [CrossRef] [PubMed]
  9. C. C. Sun, M. W. Chang, K. Y. Hsu, “Contrast-reversible photorefractive incoherent-to-coherent optical converter using anisotropic strong volume hologram,” Opt. Lett. 18, 655–657 (1993).
    [CrossRef] [PubMed]
  10. H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jap. J. Appl. Phys. 33, L116–L118 (1994).
    [CrossRef]
  11. J. Zhang, H. Wang, S. Yoshikado, T. Aruga, “Incoherent-to-coherent conversion by use of the photorefractive fanning effect,” Opt. Lett. 22, 1612–1614 (1997).
    [CrossRef]
  12. P. Amrhein, P. Günter, “Resolution limit for anisotropic Bragg diffraction from finite holographic gratings,” Opt. Lett. 19, 1173–1175 (1990).
    [CrossRef]
  13. M. H. Garrett, J. Y. Chang, H. P. Jenssen, C. Warde, “High photorefractive sensitivity in an n-type 45°-cut BaTiO3 crystal,” Opt. Lett. 17, 103–105 (1992).
    [CrossRef] [PubMed]
  14. C. C. Sun, M. W. Chang, K. Y. Hsu, “Anisotropic diffraction of strong volume in BaTiO3,” Opt. Commun. 119, 597–603 (1995).
    [CrossRef]
  15. For example, see C. C. Sun, R. H. Tsou, J. Y. Chang, M. W. Chang, “Real-time photorefractive interferometer of dynamic phase perturbation by self-interference in LiNbO3,” Appl. Opt. 36, 3581–3585 (1997).
  16. Ref. 2, p. 37.
  17. N. V. Kukhtarev, E. Krazig, H. C. Kulich, R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
    [CrossRef]
  18. D. A. Temple, C. Warde, “Anisotropic scattering in photorefractive crystals,” J. Opt. Soc. Am. B 3, 337–341 (1986).
    [CrossRef]
  19. C. C. Sun, M. W. Chang, K. Y. Hsu, “Matrix-matrix multiplication by using anisotropic self-diffraction in BaTiO3,” Appl. Opt. 33, 4501–4507 (1994).
    [CrossRef] [PubMed]
  20. R. M. Pierce, R. S. Cudney, “Photorefractive coupling between orthogonally polarized light beams in barium titanate,” Opt. Lett. 11, 784–786 (1992).
    [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. S. H. Wemple, M. DiDomenico, I. Camilibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797–1806 (1968).
    [CrossRef]
  23. G. C. Vaiiel, M. B. Klein, “Optimal properties of photorefractive materials of optical data processing,” Opt. Eng. 22, 704–711 (1983).
  24. The measurement of the focal length is demonstrated in C. C. Sun, R. H. Tsou, W. Shen, H. H. Chang, M. W. Chang, “Shearing interferometer by using Kitty self-pumped phase conjugate mirror,” Appl. Opt. 35, 1815–1819 (1996).

1997

1996

1995

C. C. Sun, M. W. Chang, K. Y. Hsu, “Anisotropic diffraction of strong volume in BaTiO3,” Opt. Commun. 119, 597–603 (1995).
[CrossRef]

1994

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jap. J. Appl. Phys. 33, L116–L118 (1994).
[CrossRef]

C. C. Sun, M. W. Chang, K. Y. Hsu, “Matrix-matrix multiplication by using anisotropic self-diffraction in BaTiO3,” Appl. Opt. 33, 4501–4507 (1994).
[CrossRef] [PubMed]

1993

1992

1990

1989

1987

1986

1985

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
[CrossRef]

1984

N. V. Kukhtarev, E. Krazig, H. C. Kulich, R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
[CrossRef]

1983

G. C. Vaiiel, M. B. Klein, “Optimal properties of photorefractive materials of optical data processing,” Opt. Eng. 22, 704–711 (1983).

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3367 (1983).
[CrossRef] [PubMed]

1980

A. A. Kamshilin, M. Petrov, “Holographic image conversion in a Bi12SiO2 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

1968

S. H. Wemple, M. DiDomenico, I. Camilibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797–1806 (1968).
[CrossRef]

Amrhein, P.

Aruga, T.

Camilibel, I.

S. H. Wemple, M. DiDomenico, I. Camilibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797–1806 (1968).
[CrossRef]

Chang, H. H.

Chang, J. Y.

Chang, M. W.

Clark, W. W.

Cudney, R. S.

R. M. Pierce, R. S. Cudney, “Photorefractive coupling between orthogonally polarized light beams in barium titanate,” Opt. Lett. 11, 784–786 (1992).
[CrossRef]

DiDomenico, M.

S. H. Wemple, M. DiDomenico, I. Camilibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797–1806 (1968).
[CrossRef]

Garrett, M. H.

Günter, P.

P. Amrhein, P. Günter, “Resolution limit for anisotropic Bragg diffraction from finite holographic gratings,” Opt. Lett. 19, 1173–1175 (1990).
[CrossRef]

E. Voit, P. Günter, “Photorefractive spatial light modulation by anisotropic self-diffraction in KNbO3 crystals,” Opt. Lett. 12, 769–771 (1987).
[CrossRef] [PubMed]

J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. II. Applications (Springer-Verlag, New York, 1989).

J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. I. Fundamental Phenomena (Springer-Verlag, New York, 1988).

Hsu, K. Y.

Huignard, J.-P.

J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. I. Fundamental Phenomena (Springer-Verlag, New York, 1988).

J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. II. Applications (Springer-Verlag, New York, 1989).

Jenssen, H. P.

Kamshilin, A. A.

A. A. Kamshilin, M. Petrov, “Holographic image conversion in a Bi12SiO2 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

Klein, M. B.

G. C. Vaiiel, M. B. Klein, “Optimal properties of photorefractive materials of optical data processing,” Opt. Eng. 22, 704–711 (1983).

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Krazig, E.

N. V. Kukhtarev, E. Krazig, H. C. Kulich, R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, E. Krazig, H. C. Kulich, R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
[CrossRef]

Kulich, H. C.

N. V. Kukhtarev, E. Krazig, H. C. Kulich, R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
[CrossRef]

Lee, H. Y.

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jap. J. Appl. Phys. 33, L116–L118 (1994).
[CrossRef]

Liu, L.

Ma, J.

Marrakchi, A.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
[CrossRef]

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3367 (1983).
[CrossRef] [PubMed]

Neurgaonkar, R. R.

Petrov, M.

A. A. Kamshilin, M. Petrov, “Holographic image conversion in a Bi12SiO2 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

Pierce, R. M.

R. M. Pierce, R. S. Cudney, “Photorefractive coupling between orthogonally polarized light beams in barium titanate,” Opt. Lett. 11, 784–786 (1992).
[CrossRef]

Psaltis, D.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
[CrossRef]

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3367 (1983).
[CrossRef] [PubMed]

Rupp, R. A.

N. V. Kukhtarev, E. Krazig, H. C. Kulich, R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
[CrossRef]

Salamo, G. J.

Sharp, E. J.

Shen, W.

Shi, Y.

Sun, C. C.

Tanguay, A. R.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
[CrossRef]

Y. Shi, D. Psaltis, A. Marrakchi, A. R. Tanguay, “Photorefractive incoherent-to-coherent optical converter,” Appl. Opt. 22, 3665–3367 (1983).
[CrossRef] [PubMed]

Temple, D. A.

Tsou, R. H.

Vaiiel, G. C.

G. C. Vaiiel, M. B. Klein, “Optimal properties of photorefractive materials of optical data processing,” Opt. Eng. 22, 704–711 (1983).

Voit, E.

Wang, H.

Wang, S. W.

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jap. J. Appl. Phys. 33, L116–L118 (1994).
[CrossRef]

Wang, Z.

Warde, C.

Wemple, S. H.

S. H. Wemple, M. DiDomenico, I. Camilibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797–1806 (1968).
[CrossRef]

Wood, G. L.

Wu, S.

Xu, L.

Yau, H. F.

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jap. J. Appl. Phys. 33, L116–L118 (1994).
[CrossRef]

Yoshikado, S.

Yu, J.

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
[CrossRef]

Zhang, J.

Appl. Opt.

Appl. Phys. B

N. V. Kukhtarev, E. Krazig, H. C. Kulich, R. A. Rupp, “Anisotropic self-diffraction in BaTiO3,” Appl. Phys. B 35, 17–21 (1984).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

S. H. Wemple, M. DiDomenico, I. Camilibel, “Dielectric and optical properties of melt-grown BaTiO3,” J. Phys. Chem. Solids 29, 1797–1806 (1968).
[CrossRef]

Jap. J. Appl. Phys.

H. Y. Lee, H. F. Yau, S. W. Wang, “Photorefractive color converter making use of beam fanning effect,” Jap. J. Appl. Phys. 33, L116–L118 (1994).
[CrossRef]

Opt. Commun.

C. C. Sun, M. W. Chang, K. Y. Hsu, “Anisotropic diffraction of strong volume in BaTiO3,” Opt. Commun. 119, 597–603 (1995).
[CrossRef]

Opt. Eng.

G. C. Vaiiel, M. B. Klein, “Optimal properties of photorefractive materials of optical data processing,” Opt. Eng. 22, 704–711 (1983).

A. Marrakchi, A. R. Tanguay, J. Yu, D. Psaltis, “Physical characterization of the photorefractive incoherent-to-coherent optical converter,” Opt. Eng. 24, 124–131 (1985).
[CrossRef]

Opt. Lett.

Sov. Tech. Phys. Lett.

A. A. Kamshilin, M. Petrov, “Holographic image conversion in a Bi12SiO2 crystal,” Sov. Tech. Phys. Lett. 6, 144–145 (1980).

Other

J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. I. Fundamental Phenomena (Springer-Verlag, New York, 1988).

J.-P. Huignard, P. Günter, Photorefractive Materials and Their Applications. II. Applications (Springer-Verlag, New York, 1989).

Ref. 2, p. 37.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of anisotropic self-diffraction (ASD) in BaTiO3.

Fig. 2
Fig. 2

Theoretical calculation of diffraction efficiency as a function of interaction length.

Fig. 3
Fig. 3

Diagram of the experimental setup. M’s, mirrors; L’s, lenses; HWP, half-wave plate; PBS, polarized beam-splitter cube; BS, beam splitter; S, shutter.

Fig. 4
Fig. 4

Measured diffraction efficiency with respect to β.

Fig. 5
Fig. 5

Measured response time with respect to β.

Fig. 6
Fig. 6

(a) Erasure pattern, composed of Chinese words that mean “Central University.” (b) Diffraction pattern, a negative replica of the erasure pattern.

Fig. 7
Fig. 7

(a) Diffraction pattern of the USAF resolution target. (b) Amplified image of the pattern. Group 4, 4, corresponding to a resolution of 22 lp/mm, is resolved.

Fig. 8
Fig. 8

(a) Diffraction pattern of the USAF target when the thin crystal was used. The group 5, 3, corresponding to a resolution of 40 lp/mm, is well resolved. (b) Image of the erasure pattern carrying a USAF resolution target after passing through the crystal. Actually, the resolution of the image system is only ∼40 lp/mm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

K g = K e 2 - K e 1 .
K o 1 = K e 1 - K g ,
K o 2 = K e 2 + K g .
K e   sin   θ w = K o   sin   θ d
θ w = sin - 1 1 n e 1 8 n o 2 - n e 2 1 / 2 ,
Γ = e d * · ˜ o · γ ˜ · e SC · ˜ o · e i ,
k g = 1 ,   0 ,   0 ,
e o = cos   θ d ,   sin   θ d ,   0 ,
e e = 0 ,   0 ,   1 ,
Γ = e d * · 0 0 n o 2 n e 2 γ 42 0 0 0 n o 2 n e 2 γ 42 0 0 · e i .
Γ = n o 2 n e 2 γ 42   cos   θ d .
I o l I e 0 = 1 1 + λ / m π Δ nl 2 ,
Δ n = 1 2 K B T q K g 1 + K g / K o 2 n o n e 2 γ 42 ,
K o = Nq 2 o K B T 1 / 2 .

Metrics