Abstract

Existence of a wafer axial dependency in the activation energy (Ea) for the dc-drift of LiNbO3 modulators has been experimentally found. The Ea for the x-cut modulators is derived to be 0.2~0.5 eV, and 1 eV for the z-cut ones.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Seino et al., “Improvement of dc-drift characteristics in Ti:LiNbO3modulator,” Technical Report IEICE OCS95-66,55–60 (1995).
  2. A. M. Yurek et al., “Commercial LiNbO3integrated optics devices,” Opt. Phot. News 6(6), 26–30 (1995).
    [CrossRef]
  3. A. O’Donnell, “Packaging and Reliability of Active Integrated Optical Components.” Proc. of the 7th Eur. Conf. on Int. Opt. (ECIO ’95). (Delft, The Netherlands, April3–6, 1995). pp. 585–591.
  4. H. Nagata, K. Kiuchi, “Temperature dependence of dc drift of Ti:LiNbO3optical modulators with sputter deposited SiO3buffer layer,” J. Appl. Phys. 73,4162–1164 (1993).
    [CrossRef]
  5. H. Nagata, J. Ichikawa. “Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators.” Opt. Eng. 34,3284–3293 (1995).
    [CrossRef]
  6. H. Nagata et al., “Impurity evaluation of SiO2films formed on LiNbO3substrates,” Jpn. J. Appl. Phys. 34,606–609 (1995).
    [CrossRef]
  7. N. Mitsugi, H. Nagata, “Hysterisis in dc bias drift of LiNbO3optical modulators,” Eng. Lab. Notes in Opt. Phot. News 7(8), (1996).
  8. H. Nagata et al., “Improved long-term dc drift in OH-reduced lithium niobate optical intensity modulators,” Eng. Lab. Notes in Opt. Phot. News 7(5), (1996).
  9. M. Fontaine et al., “Modeling of titanium diffusion into LiNbO3using a depth-dependent diffusion coefficient,” J. Appl. Phys. 60,2343–2350 (1986).
    [CrossRef]

1996 (2)

N. Mitsugi, H. Nagata, “Hysterisis in dc bias drift of LiNbO3optical modulators,” Eng. Lab. Notes in Opt. Phot. News 7(8), (1996).

H. Nagata et al., “Improved long-term dc drift in OH-reduced lithium niobate optical intensity modulators,” Eng. Lab. Notes in Opt. Phot. News 7(5), (1996).

1995 (4)

M. Seino et al., “Improvement of dc-drift characteristics in Ti:LiNbO3modulator,” Technical Report IEICE OCS95-66,55–60 (1995).

A. M. Yurek et al., “Commercial LiNbO3integrated optics devices,” Opt. Phot. News 6(6), 26–30 (1995).
[CrossRef]

H. Nagata, J. Ichikawa. “Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators.” Opt. Eng. 34,3284–3293 (1995).
[CrossRef]

H. Nagata et al., “Impurity evaluation of SiO2films formed on LiNbO3substrates,” Jpn. J. Appl. Phys. 34,606–609 (1995).
[CrossRef]

1993 (1)

H. Nagata, K. Kiuchi, “Temperature dependence of dc drift of Ti:LiNbO3optical modulators with sputter deposited SiO3buffer layer,” J. Appl. Phys. 73,4162–1164 (1993).
[CrossRef]

1986 (1)

M. Fontaine et al., “Modeling of titanium diffusion into LiNbO3using a depth-dependent diffusion coefficient,” J. Appl. Phys. 60,2343–2350 (1986).
[CrossRef]

Fontaine, M.

M. Fontaine et al., “Modeling of titanium diffusion into LiNbO3using a depth-dependent diffusion coefficient,” J. Appl. Phys. 60,2343–2350 (1986).
[CrossRef]

Ichikawa, J.

H. Nagata, J. Ichikawa. “Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators.” Opt. Eng. 34,3284–3293 (1995).
[CrossRef]

Kiuchi, K.

H. Nagata, K. Kiuchi, “Temperature dependence of dc drift of Ti:LiNbO3optical modulators with sputter deposited SiO3buffer layer,” J. Appl. Phys. 73,4162–1164 (1993).
[CrossRef]

Mitsugi, N.

N. Mitsugi, H. Nagata, “Hysterisis in dc bias drift of LiNbO3optical modulators,” Eng. Lab. Notes in Opt. Phot. News 7(8), (1996).

Nagata, H.

N. Mitsugi, H. Nagata, “Hysterisis in dc bias drift of LiNbO3optical modulators,” Eng. Lab. Notes in Opt. Phot. News 7(8), (1996).

H. Nagata et al., “Improved long-term dc drift in OH-reduced lithium niobate optical intensity modulators,” Eng. Lab. Notes in Opt. Phot. News 7(5), (1996).

H. Nagata et al., “Impurity evaluation of SiO2films formed on LiNbO3substrates,” Jpn. J. Appl. Phys. 34,606–609 (1995).
[CrossRef]

H. Nagata, J. Ichikawa. “Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators.” Opt. Eng. 34,3284–3293 (1995).
[CrossRef]

H. Nagata, K. Kiuchi, “Temperature dependence of dc drift of Ti:LiNbO3optical modulators with sputter deposited SiO3buffer layer,” J. Appl. Phys. 73,4162–1164 (1993).
[CrossRef]

O’Donnell, A.

A. O’Donnell, “Packaging and Reliability of Active Integrated Optical Components.” Proc. of the 7th Eur. Conf. on Int. Opt. (ECIO ’95). (Delft, The Netherlands, April3–6, 1995). pp. 585–591.

Seino, M.

M. Seino et al., “Improvement of dc-drift characteristics in Ti:LiNbO3modulator,” Technical Report IEICE OCS95-66,55–60 (1995).

Yurek, A. M.

A. M. Yurek et al., “Commercial LiNbO3integrated optics devices,” Opt. Phot. News 6(6), 26–30 (1995).
[CrossRef]

Eng. Lab. Notes in Opt. Phot. News (2)

N. Mitsugi, H. Nagata, “Hysterisis in dc bias drift of LiNbO3optical modulators,” Eng. Lab. Notes in Opt. Phot. News 7(8), (1996).

H. Nagata et al., “Improved long-term dc drift in OH-reduced lithium niobate optical intensity modulators,” Eng. Lab. Notes in Opt. Phot. News 7(5), (1996).

J. Appl. Phys. (2)

M. Fontaine et al., “Modeling of titanium diffusion into LiNbO3using a depth-dependent diffusion coefficient,” J. Appl. Phys. 60,2343–2350 (1986).
[CrossRef]

H. Nagata, K. Kiuchi, “Temperature dependence of dc drift of Ti:LiNbO3optical modulators with sputter deposited SiO3buffer layer,” J. Appl. Phys. 73,4162–1164 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Nagata et al., “Impurity evaluation of SiO2films formed on LiNbO3substrates,” Jpn. J. Appl. Phys. 34,606–609 (1995).
[CrossRef]

Opt. Phot. News (1)

A. M. Yurek et al., “Commercial LiNbO3integrated optics devices,” Opt. Phot. News 6(6), 26–30 (1995).
[CrossRef]

Opt. Eng. (1)

H. Nagata, J. Ichikawa. “Progress and problems in reliability of Ti:LiNbO3 optical intensity modulators.” Opt. Eng. 34,3284–3293 (1995).
[CrossRef]

Technical Report IEICE (1)

M. Seino et al., “Improvement of dc-drift characteristics in Ti:LiNbO3modulator,” Technical Report IEICE OCS95-66,55–60 (1995).

Other (1)

A. O’Donnell, “Packaging and Reliability of Active Integrated Optical Components.” Proc. of the 7th Eur. Conf. on Int. Opt. (ECIO ’95). (Delft, The Netherlands, April3–6, 1995). pp. 585–591.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Figure 1
Figure 1

Temperature dependence of the dc-drift measured tor the x-cut y-propagating LN modulator under dc = 5 V application.

Figure 2
Figure 2

Temperature dependence of the recovery drift for the modulator of Figure 1.

Figure 3
Figure 3

Arrhenius’s plot for the negative do-drift of Figure 1. The vertical axis denotes the time for drifting −3 V from the unbiased state.

Figure 4
Figure 4

Arrhenius’s plot for the positive dc-drift of Figure 1. The vertical axis denotes the drift rate.

Metrics