Abstract

Brewster’s angle Pellin-Broca prisms are commonly used as constant 90° deviation dispersing prisms. This note describes their use as nondispersive Brewster’s angle Porro prisms.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pellin, A. Broca, “Spectroscope a déviation fixe.” J. Phys. 8,314–319 (1899).
  2. W. E. Forsythe, “The rotation of prisms of constant deviation.” Astrophys. J. 45,278–284 (1917).
    [CrossRef]
  3. W. M. McClain, “How to mount a Pellin-Broca prism for laser work,” Appl. Opt. 12,153 (1973).
    [CrossRef] [PubMed]
  4. J. Reader, “Comment on: How to mount a Pellin-Broca prism for laser work,” Appl. Opt. 12,1405 (1973).
    [CrossRef] [PubMed]
  5. W. M. McClain, “Author’s reply to comment on: How to mount a Pellin-Broca prism for laser work,” Appl. Opt. 12,1405–1406 (1973).
    [CrossRef]
  6. G. J. Zissis, “Dispersive Prisms and Gratings,” Handbook of Optics: Devices, Measurements, and Properties, Vol. II, M. Bass, Ed., (McGraw-Hill, 1995), pp. 5.1–5.16.
  7. W. L. Wolfe, “Nondispersive Prisms,” Handbook of Optics: Devices, Measurements, and Properties. Vol. II, M. Bass, Ed., (McGraw-Hill, 1995). pp. 4.1–4.29.
  8. G. Gould et al., “Crossed roof prism interferometer,” Appl. Opt. 1,533–534 (1962).
    [CrossRef]
  9. L. Bergstein et al., “A total-reflection solid-state optical-maser resonator,” Proc. IRE 50,1833 (1962).
  10. S. Schiller et al.“Fused-silica monolithic total-internal-reflection resonator, ” Opt. Lett. 17,378–380 (1992).
    [CrossRef] [PubMed]
  11. S. Schiller, R.L. Byer, “Quadruply resonant optical parametric oscillation in a monolithic total-internal-reflection resonator.” J. Opt. Soc. Am. B 10, 1696–1707 (1993).
    [CrossRef]
  12. K. Fiedler et al., “Highly efficient frequency doubling with a doubly resonant total-internal-reflection ring resonator,” Opt. Lett. 18,1786–1788 (1993).
    [CrossRef] [PubMed]
  13. D. K. Serkland et al., “Continuous-wave total-internal-reflection optical parametric oscillator pumped at 1064 nm,” Opt. Lett. 19,1046–1048 (1994).
    [CrossRef] [PubMed]

1994 (1)

1993 (2)

1992 (1)

1973 (3)

1962 (2)

G. Gould et al., “Crossed roof prism interferometer,” Appl. Opt. 1,533–534 (1962).
[CrossRef]

L. Bergstein et al., “A total-reflection solid-state optical-maser resonator,” Proc. IRE 50,1833 (1962).

1917 (1)

W. E. Forsythe, “The rotation of prisms of constant deviation.” Astrophys. J. 45,278–284 (1917).
[CrossRef]

1899 (1)

P. Pellin, A. Broca, “Spectroscope a déviation fixe.” J. Phys. 8,314–319 (1899).

Bergstein, L.

L. Bergstein et al., “A total-reflection solid-state optical-maser resonator,” Proc. IRE 50,1833 (1962).

Broca, A.

P. Pellin, A. Broca, “Spectroscope a déviation fixe.” J. Phys. 8,314–319 (1899).

Byer, R.L.

Fiedler, K.

Forsythe, W. E.

W. E. Forsythe, “The rotation of prisms of constant deviation.” Astrophys. J. 45,278–284 (1917).
[CrossRef]

Gould, G.

McClain, W. M.

Pellin, P.

P. Pellin, A. Broca, “Spectroscope a déviation fixe.” J. Phys. 8,314–319 (1899).

Reader, J.

Schiller, S.

Serkland, D. K.

Wolfe, W. L.

W. L. Wolfe, “Nondispersive Prisms,” Handbook of Optics: Devices, Measurements, and Properties. Vol. II, M. Bass, Ed., (McGraw-Hill, 1995). pp. 4.1–4.29.

Zissis, G. J.

G. J. Zissis, “Dispersive Prisms and Gratings,” Handbook of Optics: Devices, Measurements, and Properties, Vol. II, M. Bass, Ed., (McGraw-Hill, 1995), pp. 5.1–5.16.

Appl. Opt. (4)

Astrophys. J. (1)

W. E. Forsythe, “The rotation of prisms of constant deviation.” Astrophys. J. 45,278–284 (1917).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

P. Pellin, A. Broca, “Spectroscope a déviation fixe.” J. Phys. 8,314–319 (1899).

Opt. Lett. (3)

Proc. IRE (1)

L. Bergstein et al., “A total-reflection solid-state optical-maser resonator,” Proc. IRE 50,1833 (1962).

Other (2)

G. J. Zissis, “Dispersive Prisms and Gratings,” Handbook of Optics: Devices, Measurements, and Properties, Vol. II, M. Bass, Ed., (McGraw-Hill, 1995), pp. 5.1–5.16.

W. L. Wolfe, “Nondispersive Prisms,” Handbook of Optics: Devices, Measurements, and Properties. Vol. II, M. Bass, Ed., (McGraw-Hill, 1995). pp. 4.1–4.29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Figure 1
Figure 1

Brewster’s angle Pellin-Broca prism constructed from a right angle prism and a bisected isosceles Brewster prism.

Figure 2a
Figure 2a

Right angle prism used as Porro prism together with Brewster’s angle wedge.

Figure 2b
Figure 2b

Porro prism and Brewster’s angle wedge joined to yield Brewster’s angle Porro prism (beampath Is solid line), which is identical to Pellln-Broca prism (conventional Pellin-Broca beampath is dotted line).

Figure 3a
Figure 3a

Ring resonator constructed from two identical Brewster’s angle Porro prisms.

Figure 3b
Figure 3b

Simple square monolithic, total internal reflection resonator constructed from two identical Brewster’s angle Porro prisms by collapsing the ring resonator in Figure 3a.

Figure 4
Figure 4

Brewster’s mirror using only one total internal reflection.

Metrics