Abstract

We present a closed-loop technique for measuring wavelength shifts associated with fiber Bragg gratings by using a fused biconical wavelength division multiplexer (WDM). The spectral response of the WDM is actively tuned by stretching of the coupling region to maintain a fixed coupling ratio at the reflected Bragg wavelength. The closed-loop operation allows sensitivities usually associated with a highly selective WDM to be obtained without compromising the measurement range. A simple theoretical model is presented together with experimental results for temperature and strain measurements.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, C. M. Laurence, D. V. Nelson, “Development of a three-axis strain and temperature fiber optic grating sensor,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 229–236 (1997).
    [CrossRef]
  2. R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
    [CrossRef]
  3. H. Sing, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997).
    [CrossRef]
  4. K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
    [CrossRef]
  5. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
    [CrossRef]
  6. S. M. Melle, K. Liu, R. M. Measures, “Practical fiber-optic Bragg grating strain gauge system,” Appl. Opt. 32, 3601–3609 (1993).
    [CrossRef] [PubMed]
  7. M. A. Davis, A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
    [CrossRef]
  8. Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
    [CrossRef]
  9. A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
    [CrossRef]
  10. L. A. Ferreira, J. L. Santos, “Demodulation scheme for fiber Bragg sensors based on source spectral characteristics,” Pure Appl. Opt. 5, 257–261 (1996).
    [CrossRef]
  11. A. D. Kersey, M. A. Davis, T. Tsai, “Fiber optic Bragg grating strain sensor with direct reflectometric interrogation,” in Proceedings of the Eleventh International Conference on Optical Fiber Sensors, Y. Ohtsuka, T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 634–637.
  12. T. Coroy, R. M. Measures, “Active wavelength demodulation of a Bragg grating fiber optic strain sensor using a quantum well electroabsorption filtering detector,” Electron. Lett. 32, 1811–1812 (1996).
    [CrossRef]
  13. A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
    [CrossRef]
  14. M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993).
    [CrossRef]
  15. D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1194 (1993).
    [CrossRef] [PubMed]
  16. M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” J. Quantum Electron. QE-18, 746–754 (1982).
    [CrossRef]
  17. H. Berthou, L. Falco, “Switching characteristics of a piezoelectrical actuated evanescent-wave directional coupler,” Electron. Lett. 23, 469–471 (1987).
    [CrossRef]
  18. J. Bures, S. Lacroix, J. Lapierre, “Analyse d’un coupler bidirectionnel à fibre optiques monomodes fusionnées,” Appl. Opt. 22, 1918–1922 (1983).
    [CrossRef]
  19. B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983).
    [CrossRef]
  20. T. A. Birks, “Twist-induced tuning in tapered fiber couplers,” Appl. Opt. 28, 4226–4233 (1989).
    [CrossRef] [PubMed]
  21. S. Celashi, J. T. De Jesus, F. M. Smolka, “All-fiber tunable beam splitter,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 358–359.
  22. A. Booysen, S. J. Spammer, P. L. Swart, “Ratiometric fiber optic sensor utilizing a fused biconically tapered coupler,” in Fiber Optic and Laser Sensors IX, R. P. DePaula, E. Udd, eds., Proc. SPIE1584, 273–279 (1991).
    [CrossRef]
  23. R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24, 327–332 (1995).
    [CrossRef]
  24. M. B. J. Diemeer, W. J. De Vries, K. W. Benoist, “Fused coupler switch using a thermo-optic cladding,” Electron. Lett. 24, 457–458 (1988).
    [CrossRef]
  25. F. P. Paine, C. D. Hussey, M. S. Yataki, “Modeling fused single-mode-fiber couplers,” Electron. Lett. 21, 461–462 (1985).
  26. R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
    [CrossRef]
  27. J. D. Love, W. M. Henry, “Quantifying loss minimization in single-mode fiber tapers,” Electron. Lett. 22, 912–914 (1986).
    [CrossRef]

1997

H. Sing, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997).
[CrossRef]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

1996

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

L. A. Ferreira, J. L. Santos, “Demodulation scheme for fiber Bragg sensors based on source spectral characteristics,” Pure Appl. Opt. 5, 257–261 (1996).
[CrossRef]

T. Coroy, R. M. Measures, “Active wavelength demodulation of a Bragg grating fiber optic strain sensor using a quantum well electroabsorption filtering detector,” Electron. Lett. 32, 1811–1812 (1996).
[CrossRef]

1995

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24, 327–332 (1995).
[CrossRef]

1994

M. A. Davis, A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

1993

1991

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

1989

1988

M. B. J. Diemeer, W. J. De Vries, K. W. Benoist, “Fused coupler switch using a thermo-optic cladding,” Electron. Lett. 24, 457–458 (1988).
[CrossRef]

1987

H. Berthou, L. Falco, “Switching characteristics of a piezoelectrical actuated evanescent-wave directional coupler,” Electron. Lett. 23, 469–471 (1987).
[CrossRef]

1986

J. D. Love, W. M. Henry, “Quantifying loss minimization in single-mode fiber tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

1985

F. P. Paine, C. D. Hussey, M. S. Yataki, “Modeling fused single-mode-fiber couplers,” Electron. Lett. 21, 461–462 (1985).

1983

B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983).
[CrossRef]

J. Bures, S. Lacroix, J. Lapierre, “Analyse d’un coupler bidirectionnel à fibre optiques monomodes fusionnées,” Appl. Opt. 22, 1918–1922 (1983).
[CrossRef]

1982

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Alavie, A. T.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

Archambault, J. L.

D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1194 (1993).
[CrossRef] [PubMed]

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Benoist, K. W.

M. B. J. Diemeer, W. J. De Vries, K. W. Benoist, “Fused coupler switch using a thermo-optic cladding,” Electron. Lett. 24, 457–458 (1988).
[CrossRef]

Berkoff, T. A.

Berthou, H.

H. Berthou, L. Falco, “Switching characteristics of a piezoelectrical actuated evanescent-wave directional coupler,” Electron. Lett. 23, 469–471 (1987).
[CrossRef]

Birks, T. A.

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

T. A. Birks, “Twist-induced tuning in tapered fiber couplers,” Appl. Opt. 28, 4226–4233 (1989).
[CrossRef] [PubMed]

Booysen, A.

A. Booysen, S. J. Spammer, P. L. Swart, “Ratiometric fiber optic sensor utilizing a fused biconically tapered coupler,” in Fiber Optic and Laser Sensors IX, R. P. DePaula, E. Udd, eds., Proc. SPIE1584, 273–279 (1991).
[CrossRef]

Brown, D. A.

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

Bures, J.

Celashi, S.

S. Celashi, J. T. De Jesus, F. M. Smolka, “All-fiber tunable beam splitter,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 358–359.

Chen, M.

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

Coroy, T.

T. Coroy, R. M. Measures, “Active wavelength demodulation of a Bragg grating fiber optic strain sensor using a quantum well electroabsorption filtering detector,” Electron. Lett. 32, 1811–1812 (1996).
[CrossRef]

Dakin, J. P.

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

M. A. Davis, A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

A. D. Kersey, M. A. Davis, T. Tsai, “Fiber optic Bragg grating strain sensor with direct reflectometric interrogation,” in Proceedings of the Eleventh International Conference on Optical Fiber Sensors, Y. Ohtsuka, T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 634–637.

De Jesus, J. T.

S. Celashi, J. T. De Jesus, F. M. Smolka, “All-fiber tunable beam splitter,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 358–359.

De Vries, W. J.

M. B. J. Diemeer, W. J. De Vries, K. W. Benoist, “Fused coupler switch using a thermo-optic cladding,” Electron. Lett. 24, 457–458 (1988).
[CrossRef]

Diemeer, M. B. J.

M. B. J. Diemeer, W. J. De Vries, K. W. Benoist, “Fused coupler switch using a thermo-optic cladding,” Electron. Lett. 24, 457–458 (1988).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Falco, L.

H. Berthou, L. Falco, “Switching characteristics of a piezoelectrical actuated evanescent-wave directional coupler,” Electron. Lett. 23, 469–471 (1987).
[CrossRef]

Ferreira, L. A.

L. A. Ferreira, J. L. Santos, “Demodulation scheme for fiber Bragg sensors based on source spectral characteristics,” Pure Appl. Opt. 5, 257–261 (1996).
[CrossRef]

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Geiger, H.

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993).
[CrossRef]

Henry, W. M.

J. D. Love, W. M. Henry, “Quantifying loss minimization in single-mode fiber tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

Hill, K. O.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24, 327–332 (1995).
[CrossRef]

B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983).
[CrossRef]

Huang, S.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

Hussey, C. D.

F. P. Paine, C. D. Hussey, M. S. Yataki, “Modeling fused single-mode-fiber couplers,” Electron. Lett. 21, 461–462 (1985).

Jackson, D. A.

Johnson, D. C.

R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24, 327–332 (1995).
[CrossRef]

B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983).
[CrossRef]

Karr, S.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

Kawachi, M.

B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983).
[CrossRef]

Kawasaki, B. S.

B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983).
[CrossRef]

Kenny, R. P.

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

M. A. Davis, A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry–Perot wavelength filter,” Opt. Lett. 18, 1370–1372 (1993).
[CrossRef]

A. D. Kersey, M. A. Davis, T. Tsai, “Fiber optic Bragg grating strain sensor with direct reflectometric interrogation,” in Proceedings of the Eleventh International Conference on Optical Fiber Sensors, Y. Ohtsuka, T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 634–637.

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Kung, H.

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

Lacroix, S.

Lamont, R. G.

Lapierre, J.

Laurence, C. M.

E. Udd, C. M. Laurence, D. V. Nelson, “Development of a three-axis strain and temperature fiber optic grating sensor,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 229–236 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Liu, K.

Love, J. D.

J. D. Love, W. M. Henry, “Quantifying loss minimization in single-mode fiber tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

Maaskant, R.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

Measures, R. M.

T. Coroy, R. M. Measures, “Active wavelength demodulation of a Bragg grating fiber optic strain sensor using a quantum well electroabsorption filtering detector,” Electron. Lett. 32, 1811–1812 (1996).
[CrossRef]

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

S. M. Melle, K. Liu, R. M. Measures, “Practical fiber-optic Bragg grating strain gauge system,” Appl. Opt. 32, 3601–3609 (1993).
[CrossRef] [PubMed]

Melle, S. M.

Meltz, G.

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

Morey, W. W.

Morse, T. F.

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

Nelson, D. V.

E. Udd, C. M. Laurence, D. V. Nelson, “Development of a three-axis strain and temperature fiber optic grating sensor,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 229–236 (1997).
[CrossRef]

Oakley, K. P.

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

Ohn, M.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

Paine, F. P.

F. P. Paine, C. D. Hussey, M. S. Yataki, “Modeling fused single-mode-fiber couplers,” Electron. Lett. 21, 461–462 (1985).

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

Reekie, L.

D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1194 (1993).
[CrossRef] [PubMed]

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993).
[CrossRef]

Reinhart, L. J.

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

Ribeiro, A. B. Lobo

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

D. A. Jackson, A. B. Lobo Ribeiro, L. Reekie, J. L. Archambault, “Simple multiplexing scheme for a fiber-optic grating sensor network,” Opt. Lett. 18, 1192–1194 (1993).
[CrossRef] [PubMed]

Santos, J. L.

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

L. A. Ferreira, J. L. Santos, “Demodulation scheme for fiber Bragg sensors based on source spectral characteristics,” Pure Appl. Opt. 5, 257–261 (1996).
[CrossRef]

Shaw, H. J.

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Sing, H.

H. Sing, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997).
[CrossRef]

Sirkis, J. S.

H. Sing, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997).
[CrossRef]

Smolka, F. M.

S. Celashi, J. T. De Jesus, F. M. Smolka, “All-fiber tunable beam splitter,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 358–359.

Spammer, S. J.

A. Booysen, S. J. Spammer, P. L. Swart, “Ratiometric fiber optic sensor utilizing a fused biconically tapered coupler,” in Fiber Optic and Laser Sensors IX, R. P. DePaula, E. Udd, eds., Proc. SPIE1584, 273–279 (1991).
[CrossRef]

Swart, P. L.

A. Booysen, S. J. Spammer, P. L. Swart, “Ratiometric fiber optic sensor utilizing a fused biconically tapered coupler,” in Fiber Optic and Laser Sensors IX, R. P. DePaula, E. Udd, eds., Proc. SPIE1584, 273–279 (1991).
[CrossRef]

Townsend, J. E.

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

Tsai, T.

A. D. Kersey, M. A. Davis, T. Tsai, “Fiber optic Bragg grating strain sensor with direct reflectometric interrogation,” in Proceedings of the Eleventh International Conference on Optical Fiber Sensors, Y. Ohtsuka, T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 634–637.

Tsvetkov, M.

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Udd, E.

E. Udd, C. M. Laurence, D. V. Nelson, “Development of a three-axis strain and temperature fiber optic grating sensor,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 229–236 (1997).
[CrossRef]

Xu, M. G.

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993).
[CrossRef]

Yataki, M. S.

F. P. Paine, C. D. Hussey, M. S. Yataki, “Modeling fused single-mode-fiber couplers,” Electron. Lett. 21, 461–462 (1985).

Zhang, Q.

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

Appl. Opt.

Electron. Lett.

T. Coroy, R. M. Measures, “Active wavelength demodulation of a Bragg grating fiber optic strain sensor using a quantum well electroabsorption filtering detector,” Electron. Lett. 32, 1811–1812 (1996).
[CrossRef]

M. G. Xu, H. Geiger, J. L. Archambault, L. Reekie, J. P. Dakin, “Novel interrogating system for fiber Bragg grating sensors using an acousto-optic tunable filter,” Electron. Lett. 29, 1510–1511 (1993).
[CrossRef]

M. A. Davis, A. D. Kersey, “All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–77 (1994).
[CrossRef]

Q. Zhang, D. A. Brown, H. Kung, J. E. Townsend, M. Chen, L. J. Reinhart, T. F. Morse, “Use of highly overcoupled couplers to detect shifts in Bragg wavelength,” Electron. Lett. 31, 480–482 (1995).
[CrossRef]

A. B. Lobo Ribeiro, L. A. Ferreira, M. Tsvetkov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

H. Berthou, L. Falco, “Switching characteristics of a piezoelectrical actuated evanescent-wave directional coupler,” Electron. Lett. 23, 469–471 (1987).
[CrossRef]

M. B. J. Diemeer, W. J. De Vries, K. W. Benoist, “Fused coupler switch using a thermo-optic cladding,” Electron. Lett. 24, 457–458 (1988).
[CrossRef]

F. P. Paine, C. D. Hussey, M. S. Yataki, “Modeling fused single-mode-fiber couplers,” Electron. Lett. 21, 461–462 (1985).

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 27, 1654–1656 (1991).
[CrossRef]

J. D. Love, W. M. Henry, “Quantifying loss minimization in single-mode fiber tapers,” Electron. Lett. 22, 912–914 (1986).
[CrossRef]

J. Lightwave Technol.

B. S. Kawasaki, M. Kawachi, K. O. Hill, D. C. Johnson, “A single-mode-fiber coupler with a variable coupling ratio,” J. Lightwave Technol. 1, 176–178 (1983).
[CrossRef]

H. Sing, J. S. Sirkis, “Simultaneously measuring temperature and strain using optical fiber microcavities,” J. Lightwave Technol. 15, 647–653 (1997).
[CrossRef]

K. O. Hill, G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263–1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1462 (1997).
[CrossRef]

J. Quantum Electron.

M. J. F. Digonnet, H. J. Shaw, “Analysis of a tunable single mode optical fiber coupler,” J. Quantum Electron. QE-18, 746–754 (1982).
[CrossRef]

Opt. Lett.

Pure Appl. Opt.

L. A. Ferreira, J. L. Santos, “Demodulation scheme for fiber Bragg sensors based on source spectral characteristics,” Pure Appl. Opt. 5, 257–261 (1996).
[CrossRef]

Smart Mater. Struct.

R. M. Measures, A. T. Alavie, R. Maaskant, M. Ohn, S. Karr, S. Huang, “A structurally integrated Bragg grating laser sensing system for a carbon fiber prestressed concrete highway bridge,” Smart Mater. Struct. 4, 20–30 (1995).
[CrossRef]

Other

E. Udd, C. M. Laurence, D. V. Nelson, “Development of a three-axis strain and temperature fiber optic grating sensor,” in Smart Structures and Materials 1997: Smart Sensing, Processing, and Instrumentation, R. O. Claus, ed., Proc. SPIE3042, 229–236 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, T. Tsai, “Fiber optic Bragg grating strain sensor with direct reflectometric interrogation,” in Proceedings of the Eleventh International Conference on Optical Fiber Sensors, Y. Ohtsuka, T. Yoshino, eds. (Japan Society of Applied Physics, Sapporo, Japan, 1996), pp. 634–637.

S. Celashi, J. T. De Jesus, F. M. Smolka, “All-fiber tunable beam splitter,” in Conference on Lasers and Electro-Optics, Vol. 7 of 1988 Technical Digest Series (Optical Society of America, Washington, D.C., 1988), pp. 358–359.

A. Booysen, S. J. Spammer, P. L. Swart, “Ratiometric fiber optic sensor utilizing a fused biconically tapered coupler,” in Fiber Optic and Laser Sensors IX, R. P. DePaula, E. Udd, eds., Proc. SPIE1584, 273–279 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Tuning characteristics for three WDM’s with 10-nm periods and different fabrication parameters.

Fig. 2
Fig. 2

Tunability as a function of the WDM period for three different fabrication parameters.

Fig. 3
Fig. 3

Experimental setup. Inset: detail of the WDM stretching mount.

Fig. 4
Fig. 4

Typical tuning of the WDM spectral response.

Fig. 5
Fig. 5

The 3-dB lock point: reflected spectrum from FBG and WDM transfer function.

Fig. 6
Fig. 6

WDM 3-dB point as a function of applied voltage to the PZT.

Fig. 7
Fig. 7

WDM 3-dB point as a function of PZT displacement.

Fig. 8
Fig. 8

System response to the applied temperature cycle.

Fig. 9
Fig. 9

System response to the applied strain cycle.

Fig. 10
Fig. 10

System response to the applied strain in open-loop operation.

Fig. 11
Fig. 11

System response to a strain square wave with 45.3-με amplitude.

Fig. 12
Fig. 12

System response to an ac strain signal with 0.3-με amplitude.

Fig. 13
Fig. 13

WDM temperature dependence.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

P 1 = P 0   sin 2 CL ,
P 2 = P 0   cos 2 CL ,
C = 3 π λ 32 n 2 a 2 1 1 + 1 / V 2 ,
Δ λ = 32 n 2 a 2 3 L 1 + 1 / V 3 1 - 1 / V .
a L T = a 0   exp - L T / 2 L H ,
λ 3 dB 8 n 2 a 2 3 L 1 + 1 / V 2 ,
Δ λ 3 dB - 8 n 2 a 2 3 L 2 1 + 1 / V 2 Δ L .
P 1 P 0 2 π Δ λ   V λ B - π 4 + 1 2 ,
P 2 P 0 - 2 π Δ λ   V λ B + π 4 + 1 2 ,
V dif = KP 0 2 π Δ λ   V λ B - λ 3 dB ,
Δ L = Δ L Bias + K PZT A τ C   KP 0 2 π Δ λ   V     λ B - λ 3 dB d t .

Metrics