Abstract

Some general features of multichannel filter radiometers operating in the UV region of the solar spectrum are reviewed with emphasis on calibration problems that are due to incomplete knowledge of responsivity in the UV-B region. An alternative calibration procedure that is able to generate a full UV spectrum obtained by a constrained inversion method is presented. Accuracy of such spectra is assessed with simulated and with real data. A comparison between customary calibration and an alternative procedure is made in terms of monochromatic UV-B irradiance and CIE dose rate (CIE is the Commission Internationale de l’Eclairage) and indicates that irradiances are estimated within 8% accuracy with solar zenith angles as great as 60° and that dose rates are within 6% for any solar zenith angle. The advantage of having an additional channel in the UV-B region is considered.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Booth, T. Mestechkina, J. H. Morrow, “Errors in the reporting of solar spectral irradiance using moderate bandwidth radiometers: an experimental investigation,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 654–663 (1994).
    [CrossRef]
  2. A. Dahlback, “Measurements of biologically effective UV doses, total ozone abundance, and cloud effects with multichannel moderate bandwidth filter instruments,” Appl. Opt. 35, 6514–6521 (1996).
    [CrossRef] [PubMed]
  3. K. Stamnes, J. Slusser, M. Bowen, “Derivation of total ozone abundance and cloud effects from spectral irradiance measurements,” Appl. Opt. 30, 4418–4426 (1991).
    [CrossRef] [PubMed]
  4. K. Stamnes, S.-C. Tsay, W. J. Wiscombe, K. Jayaweera, “Numerically stable algorithm for discrete-ordinate method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27, 2502–2509 (1988).
    [CrossRef] [PubMed]
  5. J. T. Houghton, F. W. Taylor, C. D. Rodgers, Remote Sounding of Atmospheres (Cambridge U. Press, Cambridge, UK, 1986).
  6. E. Schanda, Physical Fundamentals of Remote Sensing (Springer-Verlag, Berlin, 1986).
    [CrossRef]
  7. M. Nicolet, “Solar spectral irradiances with their diversity between 120 and 900 nm,” Planet. Space Sci. 37, 1249–1289 (1989).
    [CrossRef]
  8. J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
    [CrossRef]

1996

1994

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

1991

1989

M. Nicolet, “Solar spectral irradiances with their diversity between 120 and 900 nm,” Planet. Space Sci. 37, 1249–1289 (1989).
[CrossRef]

1988

Booth, C. R.

C. R. Booth, T. Mestechkina, J. H. Morrow, “Errors in the reporting of solar spectral irradiance using moderate bandwidth radiometers: an experimental investigation,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 654–663 (1994).
[CrossRef]

Bowen, M.

Dahlback, A.

Houghton, J. T.

J. T. Houghton, F. W. Taylor, C. D. Rodgers, Remote Sounding of Atmospheres (Cambridge U. Press, Cambridge, UK, 1986).

Jayaweera, K.

McKenzie, R.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Mestechkina, T.

C. R. Booth, T. Mestechkina, J. H. Morrow, “Errors in the reporting of solar spectral irradiance using moderate bandwidth radiometers: an experimental investigation,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 654–663 (1994).
[CrossRef]

Morrow, J. H.

C. R. Booth, T. Mestechkina, J. H. Morrow, “Errors in the reporting of solar spectral irradiance using moderate bandwidth radiometers: an experimental investigation,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 654–663 (1994).
[CrossRef]

Nicolet, M.

M. Nicolet, “Solar spectral irradiances with their diversity between 120 and 900 nm,” Planet. Space Sci. 37, 1249–1289 (1989).
[CrossRef]

Rodgers, C. D.

J. T. Houghton, F. W. Taylor, C. D. Rodgers, Remote Sounding of Atmospheres (Cambridge U. Press, Cambridge, UK, 1986).

Rosen, J.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Schanda, E.

E. Schanda, Physical Fundamentals of Remote Sensing (Springer-Verlag, Berlin, 1986).
[CrossRef]

Slusser, J.

Stamnes, K.

Taylor, F. W.

J. T. Houghton, F. W. Taylor, C. D. Rodgers, Remote Sounding of Atmospheres (Cambridge U. Press, Cambridge, UK, 1986).

Tsay, S.-C.

Wineland, M.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Wiscombe, W. J.

Zeng, J.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Appl. Opt.

J. Geophys. Res.

J. Zeng, R. McKenzie, K. Stamnes, M. Wineland, J. Rosen, “Measured UV spectra compared with discrete ordinate method simulations,” J. Geophys. Res. 99, 23,019–23,030 (1994).
[CrossRef]

Planet. Space Sci.

M. Nicolet, “Solar spectral irradiances with their diversity between 120 and 900 nm,” Planet. Space Sci. 37, 1249–1289 (1989).
[CrossRef]

Other

C. R. Booth, T. Mestechkina, J. H. Morrow, “Errors in the reporting of solar spectral irradiance using moderate bandwidth radiometers: an experimental investigation,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 654–663 (1994).
[CrossRef]

J. T. Houghton, F. W. Taylor, C. D. Rodgers, Remote Sounding of Atmospheres (Cambridge U. Press, Cambridge, UK, 1986).

E. Schanda, Physical Fundamentals of Remote Sensing (Springer-Verlag, Berlin, 1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Relative responsivities for the four channels in a GUV-511 radiometer, and two solar spectra reaching the Earth’s surface for 320 D.U., and a SZA of 40° (upper) and 340 D.U. and a SZA of 60° (lower).

Fig. 2
Fig. 2

Vertical profiles used as input to disort code: pressure (dotted curve), temperature (dashed curve), and ozone (solid curve).

Fig. 3
Fig. 3

Simulated solar UV spectra with disort (solid curve) and retrieved from a five-channel radiometer (dotted curve) for 300 D.U. and SZA’s of 0°, 40°, and 60°: (a) linear scale, (b) logarithmic scale.

Fig. 4
Fig. 4

Simulated solar UV spectra with disort (solid curve) and retrieved from a five-channel radiometer (dotted curve) for overhead Sun (SZA of 0°) and 100, 300, and 500 D.U.

Fig. 5
Fig. 5

Simulated solar UV spectra with disort (solid curve) and retrieved from a four-channel radiometer (dotted curve) and a five-channel radiometer (dashed curve) for a SZA of 80° and 300 D.U.

Fig. 6
Fig. 6

Solar UV spectra at San Diego, California, 1 September 1994, measured with a scanning radiometer SUV-100A (solid curve) and retrieved from a four-channel radiometer GUV-511 (dotted curve). Monochromatic values for each channel are indicated (double crosses): (a) SZA of 25° linear scale, (b) SZA of 25° logarithmic scale, (c) SZA of 52° linear scale.

Fig. 7
Fig. 7

Ratios of 305-nm irradiances obtained with the GUV-511 four-channel radiometer to values from the SUV-100A scanning radiometer at San Diego, California, 1 September 1994, for various SZA’s: lamp calibration (rectangles), Sun calibration (asterisks), and by inversion (crosses).

Fig. 8
Fig. 8

Solar UV spectra at San Diego, California, 15 May 1995, measured with a scanning radiometer SUV-100A (solid curve) and retrieved from a four-channel radiometer GUV-511 (dotted curve): (a) SZA’s of 14°, 46°, and 71° linear scale; (b) SZA’s of 14°, 46°, and 71° logarithmic scale.

Fig. 9
Fig. 9

Ratios of 305-nm irradiances obtained with the GUV-511 five-channel radiometer to values from the SUV-100A scanning radiometer at San Diego, California, 15 May 1994, for various SZA’s: Sun calibration (crosses) and by inversion (squares).

Fig. 10
Fig. 10

Dose rates for San Diego, California, 15 May 1995, computed from scanning radiometer (filled squares) and from retrieved spectra from the five-channel radiometer (rectangles). The ratio between them (GUV/SUV) is also included (asterisks).

Tables (1)

Tables Icon

Table 1 Calibration Constants Determined with Different Light Sources

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

V = 0   R λ E λ d λ λ   R λ E λ Δ λ ,
C = V / E λ c ,
R λ = kR λ .
CE λ c = k   λ   R λ E λ ,
k = V / λ   R λ E λ ,
i = 2 N E i - E i - 1 2 H E ,
W E = V ,
| W E - V | 2 + Γ q E
W T W + Γ H E = W T V ,

Metrics