Abstract

Novel GaInSbAs/GaSb multiple-quantum-well lasers operating near room temperature have been successfully used for tunable diode laser absorption spectroscopy in the vicinity of 2.35 μm. Continuous current tuning over a more than 150-GHz frequency range has been realized. Direct absorption measurements have been carried out on the R9, R10, R11, and R12 lines of carbon monoxide. Traces of carbon monoxide at the level of 0.3 part in 106 in volume at 100 Torr could be detected by the low-frequency wavelength-modulation technique and an astigmatic multipass cell. These results show a potential use of these diode lasers in portable low-cost trace-pollutant sensors.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 239–318.
  2. A. I. Nadezhdinskii, A. M. Prokhorov, “Modern trends in diode laser spectroscopy,” in Tunable Diode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 2–17 (1992).
    [CrossRef]
  3. H. Preier, “Physics and applications of IV–VI compound semiconductor lasers,” Semicond. Sci. Technol. 5, S12–S20 (1990).
    [CrossRef]
  4. J. B. McManus, P. L. Kebabian, M. S. Zahniser, “Astigmatic mirror multipass absorption cells for long-path length spectroscopy,” Appl. Opt. 34, 3336–3348 (1995).
    [CrossRef] [PubMed]
  5. A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
    [CrossRef]
  6. A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
    [CrossRef]
  7. D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor using a vertical cavity emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
    [CrossRef] [PubMed]
  8. B. Rosier, P. Gicquel, D. Henry, A. Coppalle, “Carbon monoxide concentrations and temperature measurements in a low pressure CH4–O2–NH3 flame,” Appl. Opt. 27, 360–364 (1988).
    [CrossRef] [PubMed]
  9. J. Reid, D. T. Cassidy, R. T. Menzies, “Linewidth measurements of tunable diode lasers using heterodyne and étalon techniques,” Appl. Opt. 21, 3961–3965 (1982).
    [CrossRef] [PubMed]
  10. V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).
  11. J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
    [CrossRef]
  12. P. Werle, F. Slemr, M. Gehrtz, C. Brauchle, “Wideband noise characteristics of a lead-salt diode laser: possibility of quantum noise limited TDLAS performance,” Appl. Opt. 28, 1638–1642 (1989).
    [CrossRef] [PubMed]
  13. D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  14. R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
    [CrossRef]
  15. A. P. Larson, L. Sanström, S. Höjer, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
    [CrossRef]
  16. D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993).
    [CrossRef]
  17. Mihalcea, D. S. Baer, R. K. Hanson, “Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows,” Appl. Opt. 36, 8745–8752 (1997).

1997 (3)

1996 (2)

A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
[CrossRef]

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

1995 (1)

1993 (1)

D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993).
[CrossRef]

1992 (1)

1990 (2)

H. Preier, “Physics and applications of IV–VI compound semiconductor lasers,” Semicond. Sci. Technol. 5, S12–S20 (1990).
[CrossRef]

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

1989 (1)

1988 (1)

1982 (1)

1977 (1)

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

1965 (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Alibert, C.

A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
[CrossRef]

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

Arndt, R.

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

Avetisov, V. G.

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

Baer, D. S.

Baranov, A. N.

A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
[CrossRef]

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

Bechara, J.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 239–318.

Boissier, G.

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
[CrossRef]

Bomse, D. S.

Brauchle, C.

Cassidy, D. T.

Coppalle, A.

Cuminal, Y.

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
[CrossRef]

Gehrtz, M.

Gicquel, P.

Hanson, R. K.

Henry, D.

Höjer, S.

A. P. Larson, L. Sanström, S. Höjer, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Hovde, D. C.

D. C. Hovde, C. A. Parsons, “Wavelength modulation detection of water vapor using a vertical cavity emitting laser,” Appl. Opt. 36, 1135–1138 (1997).
[CrossRef] [PubMed]

D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993).
[CrossRef]

Imenkov, A. N.

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

Joullié, A.

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
[CrossRef]

Kebabian, P. L.

Khusnutdinov, A. N.

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

Larson, A. P.

A. P. Larson, L. Sanström, S. Höjer, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Lazzari, J. L.

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

Longbothum, R. L.

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Mackay, G. I.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 239–318.

Matt, D. R.

D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993).
[CrossRef]

McManus, J. B.

Menzies, R. T.

Meyers, T. P.

D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993).
[CrossRef]

Mihalcea,

Nadezhdinskii, A. I.

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

A. I. Nadezhdinskii, A. M. Prokhorov, “Modern trends in diode laser spectroscopy,” in Tunable Diode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 2–17 (1992).
[CrossRef]

Nicolas, J. C.

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

Olivero, J. J.

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Parsons, C. A.

Preier, H.

H. Preier, “Physics and applications of IV–VI compound semiconductor lasers,” Semicond. Sci. Technol. 5, S12–S20 (1990).
[CrossRef]

Prokhorov, A. M.

A. I. Nadezhdinskii, A. M. Prokhorov, “Modern trends in diode laser spectroscopy,” in Tunable Diode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 2–17 (1992).
[CrossRef]

Reid, J.

Rosier, B.

Sanström, L.

A. P. Larson, L. Sanström, S. Höjer, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Schiff, H. I.

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 239–318.

Silver, J. A.

Slemr, F.

Stanton, A. C.

D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993).
[CrossRef]

D. S. Bomse, A. C. Stanton, J. A. Silver, “Frequency modulation and wavelength modulation spectroscopies: comparison of experimental methods using lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
[CrossRef] [PubMed]

Werle, P.

Yakovlev, Yu. P.

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

Zahniser, M. S.

Appl. Opt. (7)

Electron. Lett. (1)

A. N. Baranov, Y. Cuminal, G. Boissier, C. Alibert, A. Joullié, “Low-threshold laser diodes based on type-II GaInAsSb/GaSb quantum-wells operating at 2.36 microns at room temperature,” Electron. Lett. 32, 2279–2280 (1996).
[CrossRef]

J. Appl. Phys. (1)

R. Arndt, “Analytical line shapes for Lorentzian signals broadened by modulation,” J. Appl. Phys. 36, 2522–2524 (1965).
[CrossRef]

J. Atmos. Chem. (1)

D. C. Hovde, A. C. Stanton, T. P. Meyers, D. R. Matt, “Methane emissions from a landfill measured by eddy correlation using a fast response diode laser sensor,” J. Atmos. Chem. 20, 141–162 (1993).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

J. J. Olivero, R. L. Longbothum, “Empirical fits to the Voigt line width: a brief review,” J. Quant. Spectrosc. Radiat. Transfer 17, 233–236 (1977).
[CrossRef]

Opt. Eng. (1)

A. P. Larson, L. Sanström, S. Höjer, “Evaluation of distributed Bragg reflector lasers for high-sensitivity near infrared gas analysis,” Opt. Eng. 36, 117–123 (1997).
[CrossRef]

Semicond. Sci. Technol. (2)

A. N. Baranov, Y. Cuminal, G. Boissier, J. C. Nicolas, J. L. Lazzari, C. Alibert, A. Joullié, “Electroluminescence of GaInSb/GaSb strained quantum well structures grown by molecular epitaxy,” Semicond. Sci. Technol. 11, 1185–1188 (1996).
[CrossRef]

H. Preier, “Physics and applications of IV–VI compound semiconductor lasers,” Semicond. Sci. Technol. 5, S12–S20 (1990).
[CrossRef]

Sov. Tech. Phys. Lett. (1)

V. G. Avetisov, A. N. Baranov, A. N. Imenkov, A. I. Nadezhdinskii, A. N. Khusnutdinov, Yu. P. Yakovlev, “Measurements of the emission linewidth of long-wavelength injection lasers based on GaInAsSb,” Sov. Tech. Phys. Lett. 16, 549–550 (1990).

Other (2)

H. I. Schiff, G. I. Mackay, J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” in Air Monitoring by Spectroscopic Techniques, M. W. Sigrist, ed. Vol. 127 of Chemical Analysis Series (Wiley, New York, 1994), pp. 239–318.

A. I. Nadezhdinskii, A. M. Prokhorov, “Modern trends in diode laser spectroscopy,” in Tunable Diode Laser Applications, A. I. Nadezhdinskii, A. M. Prokhorov, eds., Proc. SPIE1724, 2–17 (1992).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for diode laser analysis and gas-absorption experiments.

Fig. 2
Fig. 2

Schematic structure and design of the GaInSbAs/GaSb MQW diode laser.

Fig. 3
Fig. 3

Temperature shift of longitudinal modes at a current of 300 mA.

Fig. 4
Fig. 4

(a) Current shift of one longitudinal mode near 4297 cm-1 and oscillation fringes of the germanium étalon. (b) Étalon fringes induced by all modes. Laser heat-sink temperature, -17.3 °C; carbon monoxide concentration, 100 ppmv; optical path length, 100 m; gas temperature, 296 K.

Fig. 5
Fig. 5

Normalized experimental and calculated direct transmission spectra of the R11 CO line for three pressures. Carbon monoxide concentration, 100 ppmv; gas temperature, 296 K; optical path length, 100 m; laser heat-sink temperature, -17.3 °C.

Fig. 6
Fig. 6

Comparison of direct transmission spectra of R9, R10, and R11 CO absorption lines obtained at different laser temperatures. Gas temperature, 296 K; optical path length, 100 m; for 100-ppmv of carbon monoxide in nitrogen the total pressure is 100 Torr.

Fig. 7
Fig. 7

Direct transmission signal (dotted curve) of the R12 carbon monoxide absorption line compared with simulation (solid curve with filled squares) from HITRAN database 92 and the intensity fluctuation (jagged solid curve) converted into FWHM. Gas temperature, 296 K; carbon monoxide concentration, 100 ppmv; gas pressure, 100 Torr.

Fig. 8
Fig. 8

Wavelength modulation spectroscopy signals of the R10 carbon monoxide line at 100 Torr recovered at 2f and 4f, where f = 4 kHz. Time constant, 5 ms; gas pressure, 100 Torr; gas temperature, 296 K.

Metrics