Abstract

We present a generalized theoretical model for the response of the phase/Doppler (P/D) measurement system to light scattered by cylindrical fibers. This theoretical model is valid for arbitrary fiber diameters and refractive indices, for Gaussian incident beams, and it accounts for arbitrary fiber orientations, fiber positions, and effects that are due to the two-dimensional receivers. The generalized P/D computer model (GPDCM) is the extension of an earlier study by the authors, combining past P/D simulation methodology with recent developments in modeling light scattering by tilted cylindrical fibers. A fortran computer program that implements the GPDCM theoretical development was written and tested against known P/D results and physical expectations. To illustrate the capabilities of the GPDCM, we present computation results, comparing the effect of fiber tilt, fiber position, and receiver aperture on the performance of P/D systems configured in backscatter and sidescatter arrangements. Calculations show that the effects of fiber tilt and position are most pronounced in the backscatter P/D arrangement, resulting in broadening of the measured phase distribution. The calculated mean phase shifts, however, were found to be essentially independent of the above factors. Computational results also showed that the effect of fiber tilt and position on phase-distribution measurements can be reduced through proper choice of aperture shape and by imposition of threshold criteria on measurable signal characteristics such as the amplitude ratio and visibilities. The GPDCM provides a computational tool that will be valuable in the design, optimization, and evaluation of P/D fiber measurement systems.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (56)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription