Abstract

Tunable ultraviolet radiation in the 200–230-nm region has been generated with beta barium borate crystals by type I sum-frequency mixing of the second harmonic with the fundamental beam from a dye laser pumped by the second harmonic of the same Nd:YAG laser. A noncollinear phase-matching configuration has made it possible to realize conversion efficiency of 21% at 208.3 nm with input power densities as low as 28 MW/cm2 for the fundamental and 2.4 MW/cm2 for its second-harmonic radiation. The absorption characteristic of a standard DNA sample has been studied with the generated tunable ultraviolet source, revealing additional features compared with those obtained with a spectrophotometer.

© 1998 Optical Society of America

Full Article  |  PDF Article

Errata

Gopal C. Bhar, Pathik Kumbhakar, Udit Chatterjee, Abani Mohan Rudra, Yashuhiko Kuwano, and Hikaru Kouta, "Efficient generation of 200–230-nm radiation in beta barium borate by noncollinear sum-frequency mixing: errata," Appl. Opt. 38, 1802-1802 (1999)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-38-9-1802

References

  • View by:
  • |
  • |
  • |

  1. D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
    [CrossRef]
  2. K. Miyazaki, H. Sasaki, T. Sato, “Efficient deep-ultraviolet generation by frequency doubling in β-BaB2O4 crystals,” Opt. Lett. 11, 797–799 (1986).
    [CrossRef] [PubMed]
  3. K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-15, 1013–1014 (1986).
    [CrossRef]
  4. W. L. Glab, J. P. Hessler, “Efficient generation of 200-nm light in β-BaB2O4,” Appl. Opt. 26, 3181–3182 (1987).
    [CrossRef] [PubMed]
  5. G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
    [CrossRef]
  6. G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
    [CrossRef]
  7. J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
    [CrossRef]
  8. H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
    [CrossRef]
  9. H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
    [CrossRef]
  10. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
    [CrossRef]
  11. F. Zernike, “Nonlinear optical devices,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part B, pp. 143–183.
    [CrossRef]
  12. N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).
  13. M. J. Kamlet, ed., Organic Electronic Spectral Data (Interscience, New York, 1960), Vol. 1, p. 83.

1995

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

1993

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

1991

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).

1990

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

1987

W. L. Glab, J. P. Hessler, “Efficient generation of 200-nm light in β-BaB2O4,” Appl. Opt. 26, 3181–3182 (1987).
[CrossRef] [PubMed]

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

1986

Barnes, N. P.

N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).

Bhar, G. C.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

Chatterjee, U.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

Das, S.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Glab, W. L.

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Hessler, J. P.

Imoto, S.

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

Ito, K.

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Kato, K.

K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-15, 1013–1014 (1986).
[CrossRef]

Kouta, H.

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Kuwano, Y.

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Laeri, F.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Lubinski, J.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Marumo, F.

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Miyazaki, K.

Muller, M.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Nikogosyan, D. K.

D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

Sasaki, H.

Sato, T.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Volger, K.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Zernike, F.

F. Zernike, “Nonlinear optical devices,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part B, pp. 143–183.
[CrossRef]

Appl. Opt.

Appl. Phys. A

D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

Appl. Phys. B

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

IEEE J. Quantum Electron.

K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-15, 1013–1014 (1986).
[CrossRef]

Int. J. Nonlinear Opt. Phys.

N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).

J. Appl. Phys.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

J. Cryst. Growth

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

Jpn. J. Appl. Phys.

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

Opt. Commun.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

Opt. Lett.

Other

F. Zernike, “Nonlinear optical devices,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part B, pp. 143–183.
[CrossRef]

M. J. Kamlet, ed., Organic Electronic Spectral Data (Interscience, New York, 1960), Vol. 1, p. 83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Absorption characteristics of the two BBO crystals used in the experiment: curve A, BBO (B1) crystal used for SHG; curve B, BBO (B2) crystal used for THG. The inset shows the experimental arrangement: P, 90° polarization rotator for the dye laser beam; M1, M2, M3, and M4, dichroic mirrors.

Fig. 2
Fig. 2

Noncollinear phase-matching characteristic of tunable THG in BBO for α = 3.5°. The inset shows the variation of phase-matching angle θ with noncollinear angle α for generation of 220 nm by SFM of 660 and 330 nm.

Fig. 3
Fig. 3

Energy variation at different wavelengths for SHG and THG of a dye laser in two BBO crystals as discussed in the text. (a) Curve A shows the variation of fundamental dye radiation (λ1) energy E in front of crystal B1, whereas curve B shows the variation of residual dye energy E 1 that is available for THG in front of crystal B2. (b) Variation of energy E 2 of the dye second harmonic (λ2) in front of B2. (c) Variation of the third harmonic (λ3) energy E 3. During THG the value of α is kept fixed at 3.5°. The filled squares represent the experimental points.

Fig. 4
Fig. 4

Curve A shows the variation of conversion efficiency η with increased α of noncollinear angle for generation of 208.3 nm when E 1 = 8.82 mJ at 825 nm and E 2 = 1.7 mJ at 312.5 nm. The experimental points are denoted by filled squares. Curve B shows the variation of efficiency η with input peak power I 1 corresponding to residual dye energy E 1 for generation of 208.3 nm at α = 3.5°, the experimental points are denoted by filled circles. As explained in the text, the energy of the other input beam, i.e., the second harmonic of the dye laser, is kept fixed at 1.7 mJ, which amounts to a peak power density of 2.4 MW/cm2. The inset shows the position of different interacting beams inside and outside crystal B2 under noncollinearly phase-matched configuration with α = 8° for beam generation at 208.3 nm; AA′, 625-nm beam of 2-mm diameter; BB′, 312.5-nm beam of 3-mm diameter; C, 208.3-nm beam. The numbers 1, 2, 3, 4, 5, 6, and 7 attached to the angles are, respectively, 26.3°, 12.8°, 15.4°, 7.4°, 8°, 10°, and 18.8°. Although the angles are marked according to their theoretical values, the crystal size as well as the beam diameters are proportionately enlarged for clarity.

Fig. 5
Fig. 5

(A) Transmission characteristic (in arbitrary units) of benzene vapor showing its UV absorption edge when illuminated with a coherent UV source in the 200–230-nm range. Curves I, I(a), and I(b) were obtained from measured data with our generated tunable UV source. Curve II represents the results of our spectrophotometric measurements as described in the text. (b) The UV absorption edge of DNA solution 4-mg/L concentration and kept in a 1-cm thick cuvette when illuminated with our coherent UV source in the 200–230-nm range. Curves I and I(a) were generated in this experiment and curve II was generated with our spectrophotometer.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E 2 = E 1 T 1 T 2   tanh 2 52.2 l eff 2 d eff 2 E 1 T 1 S / n 1 o 3 λ 1 2 τ π r 1 2 1 / 2 ,
S = exp - 2 A 2 l 1 - 2   exp - A + exp - 2 A / A 2 , A = 2 A 1 - A 2 l ,
d eff = d 31   sin   θ + d 11   cos   3 ϕ - d 22   sin   3 ϕ cos   θ ; d 11     d 31 > d 22 .
E 3 = E 2 T 2 T 3 λ 2 r 3 2 / λ 3 r 2 2 × tanh 2 52.2   l eff 2 d eff 2 E 1 T 1 S / n 1 o n 2 o n 3 e θ λ 2 λ 3 τ π r 1 2 1 / 2 ,
S = exp - 2 A 3 l l - 2   exp - A + exp - 2 A / A 2 ,
A = A 1 + A 2 - A 3 l ,
l eff   2 r 1 / sin α + ρ 3 .

Metrics