Abstract

Tunable ultraviolet radiation in the 200–230-nm region has been generated with beta barium borate crystals by type I sum-frequency mixing of the second harmonic with the fundamental beam from a dye laser pumped by the second harmonic of the same Nd:YAG laser. A noncollinear phase-matching configuration has made it possible to realize conversion efficiency of 21% at 208.3 nm with input power densities as low as 28 MW/cm2 for the fundamental and 2.4 MW/cm2 for its second-harmonic radiation. The absorption characteristic of a standard DNA sample has been studied with the generated tunable ultraviolet source, revealing additional features compared with those obtained with a spectrophotometer.

© 1998 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
    [CrossRef]
  2. K. Miyazaki, H. Sasaki, T. Sato, “Efficient deep-ultraviolet generation by frequency doubling in β-BaB2O4 crystals,” Opt. Lett. 11, 797–799 (1986).
    [CrossRef] [PubMed]
  3. K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-15, 1013–1014 (1986).
    [CrossRef]
  4. W. L. Glab, J. P. Hessler, “Efficient generation of 200-nm light in β-BaB2O4,” Appl. Opt. 26, 3181–3182 (1987).
    [CrossRef] [PubMed]
  5. G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
    [CrossRef]
  6. G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
    [CrossRef]
  7. J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
    [CrossRef]
  8. H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
    [CrossRef]
  9. H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
    [CrossRef]
  10. D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
    [CrossRef]
  11. F. Zernike, “Nonlinear optical devices,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part B, pp. 143–183.
  12. N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).
  13. M. J. Kamlet, ed., Organic Electronic Spectral Data (Interscience, New York, 1960), Vol. 1, p. 83.

1995 (1)

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

1993 (1)

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

1991 (4)

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).

1990 (1)

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

1987 (2)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

W. L. Glab, J. P. Hessler, “Efficient generation of 200-nm light in β-BaB2O4,” Appl. Opt. 26, 3181–3182 (1987).
[CrossRef] [PubMed]

1986 (2)

Barnes, N. P.

N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).

Bhar, G. C.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

Chatterjee, U.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

Das, S.

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

Davis, L.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Eimerl, D.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Glab, W. L.

Graham, E. K.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Hessler, J. P.

Imoto, S.

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

Ito, K.

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Kato, K.

K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-15, 1013–1014 (1986).
[CrossRef]

Kouta, H.

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Kuwano, Y.

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Laeri, F.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Lubinski, J.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Marumo, F.

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

Miyazaki, K.

Muller, M.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Nikogosyan, D. K.

D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

Sasaki, H.

Sato, T.

Velsko, S.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Volger, K.

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

Zalkin, A.

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

Zernike, F.

F. Zernike, “Nonlinear optical devices,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part B, pp. 143–183.

Appl. Opt. (1)

Appl. Phys. A (1)

D. K. Nikogosyan, “Beta barium borate (BBO) a review of its properties and applications,” Appl. Phys. A 52, 359–368 (1991).
[CrossRef]

Appl. Phys. B (1)

J. Lubinski, M. Muller, F. Laeri, K. Volger, “Collinear and noncollinear sum frequency mixing in β-BBO for a tunable 195–198 nm all-solid-state laser system,” Appl. Phys. B 61, 529–532 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kato, “Second harmonic generation to 2048 Å in β-BaB2O4,” IEEE J. Quantum Electron. QE-15, 1013–1014 (1986).
[CrossRef]

Int. J. Nonlinear Opt. Phys. (1)

N. P. Barnes, “Tunable mid-infrared sources using second order nonlinearities,” Int. J. Nonlinear Opt. Phys. 1, 639–672 (1991).

J. Appl. Phys. (1)

D. Eimerl, L. Davis, S. Velsko, E. K. Graham, A. Zalkin, “Optical, mechanical, and thermal properties of barium borate,” J. Appl. Phys. 62, 1968–1983 (1987).
[CrossRef]

J. Cryst. Growth (2)

H. Kouta, Y. Kuwano, K. Ito, F. Marumo, “β-BaB2O4 single crystal growth by Czochralski method II,” J. Cryst. Growth 114, 676–682 (1991).
[CrossRef]

H. Kouta, S. Imoto, Y. Kuwano, “β-BaB2O4 single crystal growth by Czochralski method using α-BaB2O4 and β-BaB2O4 single crystals as starting material,” J. Cryst. Growth 128, 938–944 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (1)

G. C. Bhar, U. Chatterjee, “Analysis of phase-matching for noncollinear three-wave mixing in uniaxial crystals,” Jpn. J. Appl. Phys. 29, 1103–1107 (1990).
[CrossRef]

Opt. Commun. (1)

G. C. Bhar, U. Chatterjee, S. Das, “A technique for the calculation of phase-matching angle for type-II noncollinear sum-frequency generation in negative uniaxial crystals,” Opt. Commun. 80, 381–384 (1991).
[CrossRef]

Opt. Lett. (1)

Other (2)

F. Zernike, “Nonlinear optical devices,” in Methods of Experimental Physics, C. L. Tang, ed. (Academic, New York, 1979), Vol. 15, part B, pp. 143–183.

M. J. Kamlet, ed., Organic Electronic Spectral Data (Interscience, New York, 1960), Vol. 1, p. 83.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics