Abstract

Numerical solutions to the nonlinear coupled-wave equations of a counterpropagating quasi-phase-matched device are analyzed by numerical methods for both second-harmonic generation and cascaded processes. Normalized derivations for second-harmonic generation efficiency are also presented. The nonlinear phase shifts acquired in this device by cascaded second-order processes are promising in all-optical-switching applications. Specifically, a π/2 phase shift is shown to be achievable with 42 times less input intensity than the standard Type I configuration and 100% throughput. The effects of metallic mirrors are also presented. Careful use of the phase mismatch is shown to compensate for nonideal mirrors. Finally, conservation of power in this configuration is briefly investigated.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (41)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription