Abstract

We report the efficient operation of a continuous-wave, single-frequency, diode-pumped Nd:FAP laser at 1.126 μm. When frequency quadrupled, such a laser might be used as a local oscillator for an optical frequency standard based on the single-photon 2 S 1/22 D 5/2 electric quadrupole transition of a trapped and laser-cooled 199Hg+ ion. Since the frequencies of the atomic transition and the laser are harmonically related, this scheme helps to simplify the measurement of the SD clock transition frequency by a phase-coherent chain to the cesium primary frequency standard.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. G. Dehmelt, “Mono-ion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. 31, 83–87 (1982).
    [CrossRef]
  2. E. Peik, G. Hollemann, H. Walther, “Laser cooling and quantum jumps of a single indium ion,” Phys. Rev. A 49, 402–408 (1994).
    [CrossRef] [PubMed]
  3. P. Taylor, M. Roberts, G. P. Barwood, P. Gill, “Combined optical–infrared single-ion frequency standard,” Opt. Lett. 23, 298–300 (1998).
    [CrossRef]
  4. L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
    [CrossRef]
  5. S. Urabe, M. Watanabe, H. Imajo, K. Hayasaka, “Laser cooling of trapped Ca+ and measurement of the 32D5/2 state lifetime,” Opt. Lett. 17, 1140–1142 (1992).
    [CrossRef] [PubMed]
  6. See, for example, Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996).
  7. D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).
  8. J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
    [CrossRef] [PubMed]
  9. D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
    [CrossRef]
  10. D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133.
    [CrossRef]
  11. J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser stabilization to a single ion,” in Frontiers in Laser Spectroscopy, T. W. Hänsch, M. Inguscio, eds. (North Holland, Amsterdam, 1994), pp. 359–376.
  12. C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
    [CrossRef]
  13. K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
    [CrossRef]
  14. See, for example, G. Hollemann, E. Peik, H. Walther, “Frequency-stabilized diode-pumped Nd:YAG laser at 946 nm with harmonics at 473 and 237 nm,” Opt. Lett. 19, 192–194 (1994); K. Kondo, M. Oka, H. Wada, T. Fukui, N. Umezu, K. Tatsuki, S. Kubota, “Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using β-BaB2O4,” Opt. Lett. 23, 195–197 (1998).
  15. M. Zhu, J. L. Hall, “Frequency stabilization of tunable lasers,” in Experimental Methods in the Physical Sciences, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, 1996), Vol. 29C, pp. 103–136, and references therein.
  16. R. C. Ohlmann, K. B. Steinbruegge, R. Mazelsky, “Spectroscopic and laser characteristics of neodymium-doped calcium fluorophosphate,” Appl. Opt. 7, 905–914 (1968).
    [CrossRef] [PubMed]
  17. X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993).
    [CrossRef]
  18. D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
    [CrossRef] [PubMed]
  19. I. Biaggio, P. Kerkoc, L.-S. Wu, P. Günter, B. Zysset, “Refractive indices of orthorhombic KNbO3. II. Phase-matching configurations for nonlinear-optical interactions,” J. Opt. Soc. Am. B 9, 507–517 (1992).
    [CrossRef]
  20. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
    [CrossRef]
  21. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  22. J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
    [CrossRef] [PubMed]
  23. O. Pfister, M. Mürtz, J. S. Wells, L. Hollberg, J. T. Murray, “Division by 3 of optical frequencies by use of difference-frequency generation in noncritically phase-matched RbTiOAsO4,” Opt. Lett. 21, 1387–1389 (1996).
    [CrossRef] [PubMed]

1998

P. Taylor, M. Roberts, G. P. Barwood, P. Gill, “Combined optical–infrared single-ion frequency standard,” Opt. Lett. 23, 298–300 (1998).
[CrossRef]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

1997

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
[CrossRef]

1996

1995

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

1994

1992

1986

J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
[CrossRef] [PubMed]

1985

J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
[CrossRef] [PubMed]

1982

H. G. Dehmelt, “Mono-ion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. 31, 83–87 (1982).
[CrossRef]

1981

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

1980

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

1979

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

1968

Barwood, G. P.

Bass, M.

X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993).
[CrossRef]

Bergquist, J. C.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
[CrossRef] [PubMed]

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133.
[CrossRef]

J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser stabilization to a single ion,” in Frontiers in Laser Spectroscopy, T. W. Hänsch, M. Inguscio, eds. (North Holland, Amsterdam, 1994), pp. 359–376.

Berkeland, D. J.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

Bernard, J. E.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
[CrossRef]

Biaggio, I.

Bollinger, J. J.

J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
[CrossRef] [PubMed]

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Chai, B. H. T.

X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993).
[CrossRef]

Couillaud, B.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Davis, D. D.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Dehmelt, H. G.

H. G. Dehmelt, “Mono-ion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. 31, 83–87 (1982).
[CrossRef]

Diedrich, F.

D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133.
[CrossRef]

Drullinger, R. E.

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

Gill, P.

Günter, P.

Hall, J. L.

M. Zhu, J. L. Hall, “Frequency stabilization of tunable lasers,” in Experimental Methods in the Physical Sciences, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, 1996), Vol. 29C, pp. 103–136, and references therein.

Hänsch, T. W.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Hayasaka, K.

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

S. Urabe, M. Watanabe, H. Imajo, K. Hayasaka, “Laser cooling of trapped Ca+ and measurement of the 32D5/2 state lifetime,” Opt. Lett. 17, 1140–1142 (1992).
[CrossRef] [PubMed]

Heaps, W. S.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Hemmati, H.

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

Hemmerich, A.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Hollberg, L.

Hollemann, G.

Hulet, R. G.

J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
[CrossRef] [PubMed]

Imajo, H.

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

S. Urabe, M. Watanabe, H. Imajo, K. Hayasaka, “Laser cooling of trapped Ca+ and measurement of the 32D5/2 state lifetime,” Opt. Lett. 17, 1140–1142 (1992).
[CrossRef] [PubMed]

Itano, W. M.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
[CrossRef] [PubMed]

J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
[CrossRef] [PubMed]

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133.
[CrossRef]

J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser stabilization to a single ion,” in Frontiers in Laser Spectroscopy, T. W. Hänsch, M. Inguscio, eds. (North Holland, Amsterdam, 1994), pp. 359–376.

Kerkoc, P.

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Lutts, G.

X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993).
[CrossRef]

Madej, A. A.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
[CrossRef]

Marmet, L.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
[CrossRef]

Matsubara, K.

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

Mazelsky, R.

McGee, T.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Miller, J. D.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

Moriarty, A. J.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Murray, J. T.

Mürtz, M.

Nelson, A.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Ohlmann, R. C.

Ohmukai, R.

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

Peik, E.

Pfister, O.

Philen, D.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Prestage, J. D.

J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
[CrossRef] [PubMed]

Roberts, M.

Rodgers, M.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Siemsen, K. J.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
[CrossRef]

Steinbruegge, K. B.

Tanaka, U.

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

Taylor, P.

Urabe, S.

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

S. Urabe, M. Watanabe, H. Imajo, K. Hayasaka, “Laser cooling of trapped Ca+ and measurement of the 32D5/2 state lifetime,” Opt. Lett. 17, 1140–1142 (1992).
[CrossRef] [PubMed]

Villaverde, A. B.

X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993).
[CrossRef]

Vuletic, V.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Walls, F. L.

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

Walther, H.

Watanabe, M.

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

S. Urabe, M. Watanabe, H. Imajo, K. Hayasaka, “Laser cooling of trapped Ca+ and measurement of the 32D5/2 state lifetime,” Opt. Lett. 17, 1140–1142 (1992).
[CrossRef] [PubMed]

Weimer, C. S.

D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133.
[CrossRef]

Wells, J. S.

Whitford, B. G.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
[CrossRef]

Wineland, D. J.

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
[CrossRef] [PubMed]

J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
[CrossRef] [PubMed]

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133.
[CrossRef]

J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser stabilization to a single ion,” in Frontiers in Laser Spectroscopy, T. W. Hänsch, M. Inguscio, eds. (North Holland, Amsterdam, 1994), pp. 359–376.

Wu, L.-S.

Zhang, X. X.

X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993).
[CrossRef]

Zhu, M.

M. Zhu, J. L. Hall, “Frequency stabilization of tunable lasers,” in Experimental Methods in the Physical Sciences, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, 1996), Vol. 29C, pp. 103–136, and references therein.

Zimmermann, C.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

Zysset, B.

Appl. Opt.

Appl. Phys. B

K. Matsubara, U. Tanaka, H. Imajo, K. Hayasaka, R. Ohmukai, M. Watanabe, S. Urabe, “An all-solid-state tunable 214.5-nm continuous-wave light source by using two-stage frequency doubling of a diode laser,” Appl. Phys. B 67, 1–4 (1998).
[CrossRef]

Appl. Phys. Lett.

C. Zimmermann, V. Vuletic, A. Hemmerich, T. W. Hänsch, “All solid state laser source for tunable blue and ultraviolet radiation,” Appl. Phys. Lett. 66, 2318–2320 (1995).
[CrossRef]

IEEE Trans. Instrum. Meas.

H. G. Dehmelt, “Mono-ion oscillator as potential ultimate laser frequency standard,” IEEE Trans. Instrum. Meas. 31, 83–87 (1982).
[CrossRef]

IEEE Trans. Intrum. Meas.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2–2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Intrum. Meas. 46, 169–173 (1997).
[CrossRef]

J. Appl. Phys.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys.

D. J. Wineland, J. C. Bergquist, R. E. Drullinger, H. Hemmati, W. M. Itano, F. L. Walls, “Laser cooled, stored ion experiments at NBS and possible applications to microwave and optical frequency standards,” J. Phys. 42, C8-307–C8-313 (1981).

Opt. Commun.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1980).
[CrossRef]

Opt. Lett.

Phys. Rev. A

E. Peik, G. Hollemann, H. Walther, “Laser cooling and quantum jumps of a single indium ion,” Phys. Rev. A 49, 402–408 (1994).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. J. Bollinger, J. D. Prestage, W. M. Itano, D. J. Wineland, “Laser-cooled-atomic frequency standard,” Phys. Rev. Lett. 54, 1000–1003 (1985);J. J. Bollinger, D. J. Heinzen, W. M. Itano, S. L. Gilbert, D. J. Wineland, “A 303-MHz frequency standard based on trapped Be+ ions,” IEEE Trans. Instrum. Meas. 40, 126–128 (1991).
[CrossRef] [PubMed]

D. J. Berkeland, J. D. Miller, J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser-cooled mercury ion frequency standard,” Phys. Rev. Lett. 80, 2089–2092 (1998).
[CrossRef]

J. C. Bergquist, R. G. Hulet, W. M. Itano, D. J. Wineland, “Observation of quantum jumps in a single atom,” Phys. Rev. Lett. 57, 1699–1702 (1986).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

D. D. Davis, W. S. Heaps, D. Philen, M. Rodgers, T. McGee, A. Nelson, A. J. Moriarty, “Airborne laser induced fluorescence system for measuring OH and other trace gases in the parts-per-quadrillion to parts-per-trillion range,” Rev. Sci. Instrum. 50, 1505–1516 (1979);G. L. Vaghjiani, A. R. Ravishankara, “Kinetics and mechanism of OH reaction with CH3OOH,” J. Phys. Chem. 93, 1948–1959 (1989).
[CrossRef] [PubMed]

Other

D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen Atom, G. F. Bassani, M. Inguscio, T. W. Hänsch, eds. (Springer-Verlag, Berlin, 1989), pp. 123–133.
[CrossRef]

J. C. Bergquist, W. M. Itano, D. J. Wineland, “Laser stabilization to a single ion,” in Frontiers in Laser Spectroscopy, T. W. Hänsch, M. Inguscio, eds. (North Holland, Amsterdam, 1994), pp. 359–376.

See, for example, Proceedings of the Fifth Symposium on Frequency Standards and Metrology, J. C. Bergquist, ed. (World Scientific, Singapore, 1996).

M. Zhu, J. L. Hall, “Frequency stabilization of tunable lasers,” in Experimental Methods in the Physical Sciences, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, 1996), Vol. 29C, pp. 103–136, and references therein.

X. X. Zhang, A. B. Villaverde, M. Bass, G. Lutts, B. H. T. Chai, “Spectroscopy and lasing performance of Nd3+ doped Ca5(PO4)3F,” in Growth, Characterization, and Applications of Laser Host and Nonlinear Crystals II, B. H. T. Chai, ed., Proc. SPIE1863, 35–38 (1993).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for the frequency-quadrupled, diode-pumped Nd:FAP laser: DPL, diode pump laser at 808 nm; IC1, flat input coupler for the Nd:FAP laser (HR at 1126 nm, T ≈ 90% at 808 nm); PZT, piezoelectric transducer; M1 and M2, 15-cm radius-of-curvature mirrors (HR at 1126 nm); OD, optical diode; OC1, flat output coupler (T = 0.4% at 1126 nm, T ≈ 50% at 1064 nm); IC2, flat input coupler for doubling cavity (T = 1.7% at 1126 nm); XTAL, KNbO3 or LiNbO3 doubling crystal; OC2, flat output coupler (HR at 1126 nm, T ≈ 80% at 563 nm for KNbO3 or 94% for LiNbO3); AD*P, deuterated ammonium dihydrogen phosphate.

Fig. 2
Fig. 2

Output power of the Nd:FAP laser at 1.126 μm as a function of pump power from a Ti:sapphire laser.

Fig. 3
Fig. 3

(a) AM and (b) FM noise spectral densities in a 1-kHz bandwidth for the Nd:FAP laser at 563 nm. The peak at approximately 50 kHz in (a) caused by relaxation oscillations.

Metrics