Abstract

Thermally induced lensing and birefringence modify the transverse laser profile and may eliminate any global polarization state in systems utilizing Nd:YAG as a gain medium. This creates fundamental difficulties in obtaining a high-power, polarized output beam. Although abundant literature exists regarding thermal lensing, only one birefringence compensation scheme is prevalent in the literature. A modification of this scheme is given that eliminates residual birefringence. Experimental data verify the model’s validity. A theoretical model is then presented that modifies the birefringence-compensated amplifier as a single power-dependent lens. After showing that solutions exist for a power-independent resonator consisting of a power-dependent lens between two flat mirrors, this amplifier is inserted into the resonator solution to produce, to first order, a resonator that is insensitive to thermally induced fluctuations in the rod focal length.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1988), Chap. 7.
    [CrossRef]
  2. D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
    [CrossRef]
  3. D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
    [CrossRef]
  4. W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
    [CrossRef]
  5. S. Z. Kurtev, O. E. Denchev, S. D. Savov, “Effects of thermally induced birefringence in high-power electro-optically Q-switched Nd:YAG lasers and their compensation,” Appl. Opt. 32, 278–285 (1993).
    [CrossRef] [PubMed]
  6. G. T. Bennett, Rockwell Aerospace, Rocketdyne Division, Canoga Park, Calif. (personal communication, 1996). Bennett is now at Coherent Technologies, Lafayette, Colo., 80026 (glennb@ctilidar.com).
  7. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1566 (1966).
    [CrossRef] [PubMed]
  8. C. Fog, “Synthesis of optical systems,” Appl. Opt. 21, 1530–1531 (1982).
    [CrossRef] [PubMed]
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 21.
  10. H. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [CrossRef] [PubMed]
  11. M. Murdoch, C. Denman, “Mode-volume and pump power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35, 5925–5936 (1996).
    [CrossRef]
  12. L. W. Casperson, “Synthesis of Gaussian beam optical systems,” Appl. Opt. 20, 2243–2249 (1981).
    [CrossRef] [PubMed]

1996 (1)

1993 (1)

1986 (1)

1982 (1)

1981 (3)

L. W. Casperson, “Synthesis of Gaussian beam optical systems,” Appl. Opt. 20, 2243–2249 (1981).
[CrossRef] [PubMed]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

1971 (1)

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

1966 (1)

Bennett, G. T.

G. T. Bennett, Rockwell Aerospace, Rocketdyne Division, Canoga Park, Calif. (personal communication, 1996). Bennett is now at Coherent Technologies, Lafayette, Colo., 80026 (glennb@ctilidar.com).

Casperson, L. W.

Denchev, O. E.

Denman, C.

deWit, M.

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Fog, C.

Hanna, D. C.

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1988), Chap. 7.
[CrossRef]

Kogelnik, H.

Kurtev, S. Z.

Li, T.

Magni, H.

Murdoch, M.

Savov, S. D.

Sawyers, C. G.

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Scott, W. C.

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 21.

Yuratich, M. A.

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Opt. Commun. (1)

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

Opt. Quantum Electron. (1)

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Other (3)

G. T. Bennett, Rockwell Aerospace, Rocketdyne Division, Canoga Park, Calif. (personal communication, 1996). Bennett is now at Coherent Technologies, Lafayette, Colo., 80026 (glennb@ctilidar.com).

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 21.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1988), Chap. 7.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Amplifier consisting of a Nd:YAG rod, telescope, 45° Faraday rotator, and a high-reflecting flat-back mirror.

Fig. 2
Fig. 2

Isolator setup to measure birefringence compensation of the amplifier. The thin-film polarizer (TFP) transmits 95% of incident p light and 1% of incident s light.

Fig. 3
Fig. 3

Plot of the ratio of polarized beam power to depolarized beam power as a function of lens to back mirror spacing (in centimeters).

Fig. 4
Fig. 4

Plot of the ratio of polarized beam power to depolarized beam power as a function of input electrical power (in watts).

Fig. 5
Fig. 5

Four-pass oscillator configuration. The distance d is from the front of the rod to mirror M0. TFP transmits 95% of incident p light and 1% of incident s light. The output coupler M0 is a flat mirror with 80% reflectivity at 1064 nm.

Fig. 6
Fig. 6

Power-dependent lens between two flat mirrors.

Fig. 7
Fig. 7

Plot of combinations of resonator mirror spacings L and d that yield solutions for the thin-lens model using a 63-cm focal length lens (i.e., the compensated amplifier).

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n r , θ r = n 0 1 - Q 2 K 1 2 n 0 d n d T + n 0 2 α C r , θ r 2 ,
1 q z = 1 R z - i λ π w z 2 ,
q z 2 = Aq z 1 + B Cq z 1 + D ,
A r B r C r D r = A θ B θ C θ D θ .
M r θ = 1 - L Φ r L - Φ r - Φ θ + L Φ r Φ θ 1 - L Φ θ ,
M θ r = 1 - L Φ θ L - Φ r - Φ θ + L Φ r Φ θ 1 - L Φ r .
M θ r = 1 0 - Φ r 1   a b c a   1 0 - Φ θ 1 = a - Φ θ b b - a Φ θ - a Φ r + b Φ r Φ θ + c a - Φ r b ,
M r θ = 1 0 - Φ θ 1   a b c a   1 0 - Φ r 1 = a - Φ r b b - a Φ θ - a Φ r + b Φ r Φ θ + c a - Φ θ b .
L 2 = f 1 f 1 + f 2 + δ - L 1 f 2 + δ f 2 f 1 2 - δ L 1 + f 1 ,
n r , θ = n 0 - 1 2   b r , θ r 2 ,
M r , θ = cos γ r , θ L n 0 γ r , θ - 1   sin γ r , θ L - n 0 γ r , θ   sin γ r , θ L cos γ r , θ L ,
γ r , θ = b r , θ n 0 1 / 2 .
b r , θ = n 0 Q K 1 2 n 0 d n d T + n 0 2 α C r , θ .
Q = η T P elect π R 2 L ,
b r = 11.54 × 10 - 6 W - 1   cm - 2 η T P elect ,
b θ = 9.24 × 10 - 6 W - 1   cm - 2 η T P elect .
A B C D = 0.95 12.2 - 0.0167 0.85 .
A B C D = 1 h 2 0 1   1 0 C 1   1 h 1 0 1 ,
h 1 = D - 1 C ,
h 2 = A - 1 C ,
q 2 = B tot C tot ,
d B tot d P - B tot C tot d C tot d P = 0 ,
A tot B tot C tot D tot = 1 0 - Φ 1   1 2 d 0 1   1 0 - Φ 1 = 1 - 2 Φ d 2 d 2 Φ Φ d - 1 1 - 2 Φ d .
A tot B tot C tot D tot = 1 L 0 1   1 - 2 Φ d 2 d 2 Φ Φ d - 1 1 - 2 Φ d   1 L 0 1 .
1 L 0 1   1 + BC 1 / 2 B C 1 + BC 1 / 2   1 2 d 0 1 × 1 + BC 1 / 2 B C 1 + BC 1 / 2   1 L 0 1 ,  
d d P B tot C tot = d d P   g B ,   C P = d g d B d B d P + d g d C d C d P = d g d C d C d P .

Metrics