Abstract

Thermally induced lensing and birefringence modify the transverse laser profile and may eliminate any global polarization state in systems utilizing Nd:YAG as a gain medium. This creates fundamental difficulties in obtaining a high-power, polarized output beam. Although abundant literature exists regarding thermal lensing, only one birefringence compensation scheme is prevalent in the literature. A modification of this scheme is given that eliminates residual birefringence. Experimental data verify the model’s validity. A theoretical model is then presented that modifies the birefringence-compensated amplifier as a single power-dependent lens. After showing that solutions exist for a power-independent resonator consisting of a power-dependent lens between two flat mirrors, this amplifier is inserted into the resonator solution to produce, to first order, a resonator that is insensitive to thermally induced fluctuations in the rod focal length.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1988), Chap. 7.
    [CrossRef]
  2. D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
    [CrossRef]
  3. D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
    [CrossRef]
  4. W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
    [CrossRef]
  5. S. Z. Kurtev, O. E. Denchev, S. D. Savov, “Effects of thermally induced birefringence in high-power electro-optically Q-switched Nd:YAG lasers and their compensation,” Appl. Opt. 32, 278–285 (1993).
    [CrossRef] [PubMed]
  6. G. T. Bennett, Rockwell Aerospace, Rocketdyne Division, Canoga Park, Calif. (personal communication, 1996). Bennett is now at Coherent Technologies, Lafayette, Colo., 80026 (glennb@ctilidar.com).
  7. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1566 (1966).
    [CrossRef] [PubMed]
  8. C. Fog, “Synthesis of optical systems,” Appl. Opt. 21, 1530–1531 (1982).
    [CrossRef] [PubMed]
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 21.
  10. H. Magni, “Resonators for solid-state lasers with large-volume fundamental mode and high alignment stability,” Appl. Opt. 25, 107–117 (1986).
    [CrossRef] [PubMed]
  11. M. Murdoch, C. Denman, “Mode-volume and pump power limitations in injection-locked TEM00 Nd:YAG rod lasers,” Appl. Opt. 35, 5925–5936 (1996).
    [CrossRef]
  12. L. W. Casperson, “Synthesis of Gaussian beam optical systems,” Appl. Opt. 20, 2243–2249 (1981).
    [CrossRef] [PubMed]

1996 (1)

1993 (1)

1986 (1)

1982 (1)

1981 (3)

L. W. Casperson, “Synthesis of Gaussian beam optical systems,” Appl. Opt. 20, 2243–2249 (1981).
[CrossRef] [PubMed]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

1971 (1)

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

1966 (1)

Bennett, G. T.

G. T. Bennett, Rockwell Aerospace, Rocketdyne Division, Canoga Park, Calif. (personal communication, 1996). Bennett is now at Coherent Technologies, Lafayette, Colo., 80026 (glennb@ctilidar.com).

Casperson, L. W.

Denchev, O. E.

Denman, C.

deWit, M.

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Fog, C.

Hanna, D. C.

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1988), Chap. 7.
[CrossRef]

Kogelnik, H.

Kurtev, S. Z.

Li, T.

Magni, H.

Murdoch, M.

Savov, S. D.

Sawyers, C. G.

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

Scott, W. C.

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 21.

Yuratich, M. A.

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

W. C. Scott, M. deWit, “Birefringence compensation and mode enhancement on a Nd:YAG laser,” Appl. Phys. Lett. 18, 3–4 (1971).
[CrossRef]

Opt. Commun. (1)

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Large-volume TEM00 mode operation of Nd:YAG lasers,” Opt. Commun. 37, 359–362 (1981).
[CrossRef]

Opt. Quantum Electron. (1)

D. C. Hanna, C. G. Sawyers, M. A. Yuratich, “Telescopic resonators for large-volume TEM00 mode operation,” Opt. Quantum Electron. 13, 493–507 (1981).
[CrossRef]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer-Verlag, New York, 1988), Chap. 7.
[CrossRef]

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986), Chaps. 15 and 21.

G. T. Bennett, Rockwell Aerospace, Rocketdyne Division, Canoga Park, Calif. (personal communication, 1996). Bennett is now at Coherent Technologies, Lafayette, Colo., 80026 (glennb@ctilidar.com).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Amplifier consisting of a Nd:YAG rod, telescope, 45° Faraday rotator, and a high-reflecting flat-back mirror.

Fig. 2
Fig. 2

Isolator setup to measure birefringence compensation of the amplifier. The thin-film polarizer (TFP) transmits 95% of incident p light and 1% of incident s light.

Fig. 3
Fig. 3

Plot of the ratio of polarized beam power to depolarized beam power as a function of lens to back mirror spacing (in centimeters).

Fig. 4
Fig. 4

Plot of the ratio of polarized beam power to depolarized beam power as a function of input electrical power (in watts).

Fig. 5
Fig. 5

Four-pass oscillator configuration. The distance d is from the front of the rod to mirror M0. TFP transmits 95% of incident p light and 1% of incident s light. The output coupler M0 is a flat mirror with 80% reflectivity at 1064 nm.

Fig. 6
Fig. 6

Power-dependent lens between two flat mirrors.

Fig. 7
Fig. 7

Plot of combinations of resonator mirror spacings L and d that yield solutions for the thin-lens model using a 63-cm focal length lens (i.e., the compensated amplifier).

Equations (26)

Equations on this page are rendered with MathJax. Learn more.

n r , θ r = n 0 1 - Q 2 K 1 2 n 0 d n d T + n 0 2 α C r , θ r 2 ,
1 q z = 1 R z - i λ π w z 2 ,
q z 2 = Aq z 1 + B Cq z 1 + D ,
A r B r C r D r = A θ B θ C θ D θ .
M r θ = 1 - L Φ r L - Φ r - Φ θ + L Φ r Φ θ 1 - L Φ θ ,
M θ r = 1 - L Φ θ L - Φ r - Φ θ + L Φ r Φ θ 1 - L Φ r .
M θ r = 1 0 - Φ r 1   a b c a   1 0 - Φ θ 1 = a - Φ θ b b - a Φ θ - a Φ r + b Φ r Φ θ + c a - Φ r b ,
M r θ = 1 0 - Φ θ 1   a b c a   1 0 - Φ r 1 = a - Φ r b b - a Φ θ - a Φ r + b Φ r Φ θ + c a - Φ θ b .
L 2 = f 1 f 1 + f 2 + δ - L 1 f 2 + δ f 2 f 1 2 - δ L 1 + f 1 ,
n r , θ = n 0 - 1 2   b r , θ r 2 ,
M r , θ = cos γ r , θ L n 0 γ r , θ - 1   sin γ r , θ L - n 0 γ r , θ   sin γ r , θ L cos γ r , θ L ,
γ r , θ = b r , θ n 0 1 / 2 .
b r , θ = n 0 Q K 1 2 n 0 d n d T + n 0 2 α C r , θ .
Q = η T P elect π R 2 L ,
b r = 11.54 × 10 - 6 W - 1   cm - 2 η T P elect ,
b θ = 9.24 × 10 - 6 W - 1   cm - 2 η T P elect .
A B C D = 0.95 12.2 - 0.0167 0.85 .
A B C D = 1 h 2 0 1   1 0 C 1   1 h 1 0 1 ,
h 1 = D - 1 C ,
h 2 = A - 1 C ,
q 2 = B tot C tot ,
d B tot d P - B tot C tot d C tot d P = 0 ,
A tot B tot C tot D tot = 1 0 - Φ 1   1 2 d 0 1   1 0 - Φ 1 = 1 - 2 Φ d 2 d 2 Φ Φ d - 1 1 - 2 Φ d .
A tot B tot C tot D tot = 1 L 0 1   1 - 2 Φ d 2 d 2 Φ Φ d - 1 1 - 2 Φ d   1 L 0 1 .
1 L 0 1   1 + BC 1 / 2 B C 1 + BC 1 / 2   1 2 d 0 1 × 1 + BC 1 / 2 B C 1 + BC 1 / 2   1 L 0 1 ,  
d d P B tot C tot = d d P   g B ,   C P = d g d B d B d P + d g d C d C d P = d g d C d C d P .

Metrics