Abstract

The CO formation as a result of the CO2 photodissociation at 230.08 nm was observed by using the two-photon laser-induced fluorescence (LIF) method. The measurements were performed in a propane–air combustion product flow and in mixtures of CO2 and O2. The temperature dependence of the fluorescence signal caused by CO molecules, produced in the photodissociation of CO2 molecules under the action of laser radiation at a wavelength of 230.08 nm, was measured at temperatures ranging from 1300 to 2000 K. It is shown that consideration of CO2 photodissociation under the action of the probing radiation is necessary when one applies the two-photon LIF method for the measurement of small CO concentrations in high-temperature gas mixtures containing CO2. As an example, a correction is given of the CO concentration profiles measured by the LIF method in the combustion product flow around a cooled metallic plate.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Alden, S. Wallin, W. Wendt, “Application of two photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
    [CrossRef]
  2. J. M. Seitzman, J. Haumann, R. K. Hanson, “Quantitative two-photon LIF imaging of carbon monoxide in combustion gases,” Appl. Opt. 26, 2892–2899 (1987).
    [CrossRef] [PubMed]
  3. D. L. van Oostendorp, W. T. A. Borghols, H. B. Levinsky, “The influence of ambient air entrainment on partially premixed burner flames: LIF imaging of CO and OH,” Combust. Sci. Technol. 79, 195–206 (1991).
    [CrossRef]
  4. A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, R. A. A. M. Jacobs, “Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames,” Appl. Opt. 34, 7074–7082 (1995).
    [CrossRef] [PubMed]
  5. P. J. H. Tjossen, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
    [CrossRef]
  6. J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
    [CrossRef]
  7. U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
    [CrossRef]
  8. J. E. M. Golgsmith, “Photochemical effects in two-photon-excited fluorescence detection of atomic oxygen in flame,” Appl. Opt. 26, 3566–3572 (1987).
    [CrossRef]
  9. J. E. M. Golgsmith, M. Alden, U. Westblom, “Photochemical effects in multiple species fluorescence imaging in hydrogen–nitrous oxide flames,” Appl. Opt. 29, 4852–4859 (1990).
    [CrossRef]
  10. U. Westblom, S. Agrup, M. Alden, P. Cederbalk, “Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects,” Appl. Opt. 30, 2990–3002 (1991).
    [CrossRef] [PubMed]
  11. M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of O2 and CO2 from vibrationally excited states at high temperature,” Chem. Phys. Lett. 176, 519–525 (1991).
    [CrossRef]
  12. A. V. Eremin, V. V. Shumova, V. S. Ziborov, H-J. Mick, P. Roth, “Laser-flash-photolysis study of the decomposition of vibrationally excited CO2,” in Proceedings of the 20th International Symposium on Shock Waves (World Scientific, Pasadena, Calif., 1995), Vol. 2, pp. 881–886.
  13. A. P. Zuev, A. Y. Starikovsky, “UV absorption cross section of the molecules O2, NO, N2O, CO2, H2O, and NO2,” J. Appl. Spectrosc. 52, 304–313 (1990).
    [CrossRef]
  14. A. V. Mokhov, A. P. Nefedov, “Calibrated low-temperature plasma source for diagnostic research,” High Temp. (USSR) 25, 609–613 (1987).
  15. S. A. Self, I. A. Vasilèva, A. P. Nefedov, “Plasma diagnostics in an MHD installation,” in Open-Cycle Magnetohydrodynamic Electrical Power Generation, M. Petric, B. Ya. Shumyatsky, eds. (Argonne National Laboratories, Argonne, Ill., 1978), Chap. 14, pp. 622–680.
  16. M. S. Benilov, P. A. Pozdeev, B. V. Rogov, V. A. Sinel’shchikov, “Nonequilibrium boundary layer of potassium-seeded combustion products,” Combust. Flame 98, 313–325 (1994).
    [CrossRef]
  17. M. Drabbels, J. Heinze, J. J. ter Meulen, W. L. Meerts, “High resolution double-resonance spectroscopy on Rydberg states of CO,” J. Chem. Phys. 99, 5701–5711 (1993).
    [CrossRef]
  18. F. Westley, Table of Recommended Rate Constants for Chemical Reactions Occurring in Combustion (U.S. GPO, Washington, D.C., 1980).
  19. M. G. Kasparov, A. V. Mokhov, A. P. Nefedov, “Formation kinetics of sodium compounds in combustion product plasmas of propane in air,” High Temp. (USSR) 26, 463–469 (1988).
  20. A. P. Nefedov, B. V. Rogov, V. A. Sinels̀hchikov, “Influence of parameters of flow in a parallel plate channel on the CO content of the combustion products,” in Eighth International Symposium on Transport Phenomena in Combustion (Taylor & Francis, Washington, D.C., 1996), Vol. 2, pp. 1818–1828.

1995 (1)

1994 (1)

M. S. Benilov, P. A. Pozdeev, B. V. Rogov, V. A. Sinel’shchikov, “Nonequilibrium boundary layer of potassium-seeded combustion products,” Combust. Flame 98, 313–325 (1994).
[CrossRef]

1993 (2)

M. Drabbels, J. Heinze, J. J. ter Meulen, W. L. Meerts, “High resolution double-resonance spectroscopy on Rydberg states of CO,” J. Chem. Phys. 99, 5701–5711 (1993).
[CrossRef]

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

1991 (3)

D. L. van Oostendorp, W. T. A. Borghols, H. B. Levinsky, “The influence of ambient air entrainment on partially premixed burner flames: LIF imaging of CO and OH,” Combust. Sci. Technol. 79, 195–206 (1991).
[CrossRef]

U. Westblom, S. Agrup, M. Alden, P. Cederbalk, “Detection of nitrogen atoms in flames using two-photon laser-induced fluorescence and investigations of photochemical effects,” Appl. Opt. 30, 2990–3002 (1991).
[CrossRef] [PubMed]

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of O2 and CO2 from vibrationally excited states at high temperature,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

1990 (2)

A. P. Zuev, A. Y. Starikovsky, “UV absorption cross section of the molecules O2, NO, N2O, CO2, H2O, and NO2,” J. Appl. Spectrosc. 52, 304–313 (1990).
[CrossRef]

J. E. M. Golgsmith, M. Alden, U. Westblom, “Photochemical effects in multiple species fluorescence imaging in hydrogen–nitrous oxide flames,” Appl. Opt. 29, 4852–4859 (1990).
[CrossRef]

1989 (1)

P. J. H. Tjossen, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

1988 (1)

M. G. Kasparov, A. V. Mokhov, A. P. Nefedov, “Formation kinetics of sodium compounds in combustion product plasmas of propane in air,” High Temp. (USSR) 26, 463–469 (1988).

1987 (3)

1986 (1)

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

1984 (1)

M. Alden, S. Wallin, W. Wendt, “Application of two photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Agrup, S.

Alden, M.

Benilov, M. S.

M. S. Benilov, P. A. Pozdeev, B. V. Rogov, V. A. Sinel’shchikov, “Nonequilibrium boundary layer of potassium-seeded combustion products,” Combust. Flame 98, 313–325 (1994).
[CrossRef]

Bernstein, J. S.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Borghols, W. T. A.

D. L. van Oostendorp, W. T. A. Borghols, H. B. Levinsky, “The influence of ambient air entrainment on partially premixed burner flames: LIF imaging of CO and OH,” Combust. Sci. Technol. 79, 195–206 (1991).
[CrossRef]

Cederbalk, P.

Choi, J. B.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Cool, T. A.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Drabbels, M.

M. Drabbels, J. Heinze, J. J. ter Meulen, W. L. Meerts, “High resolution double-resonance spectroscopy on Rydberg states of CO,” J. Chem. Phys. 99, 5701–5711 (1993).
[CrossRef]

Eremin, A. V.

A. V. Eremin, V. V. Shumova, V. S. Ziborov, H-J. Mick, P. Roth, “Laser-flash-photolysis study of the decomposition of vibrationally excited CO2,” in Proceedings of the 20th International Symposium on Shock Waves (World Scientific, Pasadena, Calif., 1995), Vol. 2, pp. 881–886.

Fein, A.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Golgsmith, J. E. M.

Hanson, R. K.

Haumann, J.

Heinze, J.

M. Drabbels, J. Heinze, J. J. ter Meulen, W. L. Meerts, “High resolution double-resonance spectroscopy on Rydberg states of CO,” J. Chem. Phys. 99, 5701–5711 (1993).
[CrossRef]

Howard, S. L.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Jacobs, R. A. A. M.

Just, Th.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

Kasparov, M. G.

M. G. Kasparov, A. V. Mokhov, A. P. Nefedov, “Formation kinetics of sodium compounds in combustion product plasmas of propane in air,” High Temp. (USSR) 26, 463–469 (1988).

Kohse-Hoinghaus, K.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

Koshi, M.

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of O2 and CO2 from vibrationally excited states at high temperature,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

Levinsky, H. B.

A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, R. A. A. M. Jacobs, “Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames,” Appl. Opt. 34, 7074–7082 (1995).
[CrossRef] [PubMed]

D. L. van Oostendorp, W. T. A. Borghols, H. B. Levinsky, “The influence of ambient air entrainment on partially premixed burner flames: LIF imaging of CO and OH,” Combust. Sci. Technol. 79, 195–206 (1991).
[CrossRef]

Locke, R. J.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Matsui, H.

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of O2 and CO2 from vibrationally excited states at high temperature,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

Meerts, W. L.

M. Drabbels, J. Heinze, J. J. ter Meulen, W. L. Meerts, “High resolution double-resonance spectroscopy on Rydberg states of CO,” J. Chem. Phys. 99, 5701–5711 (1993).
[CrossRef]

Meier, U.

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

Mick, H-J.

A. V. Eremin, V. V. Shumova, V. S. Ziborov, H-J. Mick, P. Roth, “Laser-flash-photolysis study of the decomposition of vibrationally excited CO2,” in Proceedings of the 20th International Symposium on Shock Waves (World Scientific, Pasadena, Calif., 1995), Vol. 2, pp. 881–886.

Miziolek, A. W.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Mokhov, A. V.

A. V. Mokhov, H. B. Levinsky, C. E. van der Meij, R. A. A. M. Jacobs, “Analysis of laser-induced-fluorescence carbon monoxide measurements in turbulent nonpremixed flames,” Appl. Opt. 34, 7074–7082 (1995).
[CrossRef] [PubMed]

M. G. Kasparov, A. V. Mokhov, A. P. Nefedov, “Formation kinetics of sodium compounds in combustion product plasmas of propane in air,” High Temp. (USSR) 26, 463–469 (1988).

A. V. Mokhov, A. P. Nefedov, “Calibrated low-temperature plasma source for diagnostic research,” High Temp. (USSR) 25, 609–613 (1987).

Nefedov, A. P.

M. G. Kasparov, A. V. Mokhov, A. P. Nefedov, “Formation kinetics of sodium compounds in combustion product plasmas of propane in air,” High Temp. (USSR) 26, 463–469 (1988).

A. V. Mokhov, A. P. Nefedov, “Calibrated low-temperature plasma source for diagnostic research,” High Temp. (USSR) 25, 609–613 (1987).

S. A. Self, I. A. Vasilèva, A. P. Nefedov, “Plasma diagnostics in an MHD installation,” in Open-Cycle Magnetohydrodynamic Electrical Power Generation, M. Petric, B. Ya. Shumyatsky, eds. (Argonne National Laboratories, Argonne, Ill., 1978), Chap. 14, pp. 622–680.

A. P. Nefedov, B. V. Rogov, V. A. Sinels̀hchikov, “Influence of parameters of flow in a parallel plate channel on the CO content of the combustion products,” in Eighth International Symposium on Transport Phenomena in Combustion (Taylor & Francis, Washington, D.C., 1996), Vol. 2, pp. 1818–1828.

Pozdeev, P. A.

M. S. Benilov, P. A. Pozdeev, B. V. Rogov, V. A. Sinel’shchikov, “Nonequilibrium boundary layer of potassium-seeded combustion products,” Combust. Flame 98, 313–325 (1994).
[CrossRef]

Rogov, B. V.

M. S. Benilov, P. A. Pozdeev, B. V. Rogov, V. A. Sinel’shchikov, “Nonequilibrium boundary layer of potassium-seeded combustion products,” Combust. Flame 98, 313–325 (1994).
[CrossRef]

A. P. Nefedov, B. V. Rogov, V. A. Sinels̀hchikov, “Influence of parameters of flow in a parallel plate channel on the CO content of the combustion products,” in Eighth International Symposium on Transport Phenomena in Combustion (Taylor & Francis, Washington, D.C., 1996), Vol. 2, pp. 1818–1828.

Roth, P.

A. V. Eremin, V. V. Shumova, V. S. Ziborov, H-J. Mick, P. Roth, “Laser-flash-photolysis study of the decomposition of vibrationally excited CO2,” in Proceedings of the 20th International Symposium on Shock Waves (World Scientific, Pasadena, Calif., 1995), Vol. 2, pp. 881–886.

Sausa, R. C.

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

Seitzman, J. M.

Self, S. A.

S. A. Self, I. A. Vasilèva, A. P. Nefedov, “Plasma diagnostics in an MHD installation,” in Open-Cycle Magnetohydrodynamic Electrical Power Generation, M. Petric, B. Ya. Shumyatsky, eds. (Argonne National Laboratories, Argonne, Ill., 1978), Chap. 14, pp. 622–680.

Shumova, V. V.

A. V. Eremin, V. V. Shumova, V. S. Ziborov, H-J. Mick, P. Roth, “Laser-flash-photolysis study of the decomposition of vibrationally excited CO2,” in Proceedings of the 20th International Symposium on Shock Waves (World Scientific, Pasadena, Calif., 1995), Vol. 2, pp. 881–886.

Sinel’shchikov, V. A.

M. S. Benilov, P. A. Pozdeev, B. V. Rogov, V. A. Sinel’shchikov, “Nonequilibrium boundary layer of potassium-seeded combustion products,” Combust. Flame 98, 313–325 (1994).
[CrossRef]

Sinels`hchikov, V. A.

A. P. Nefedov, B. V. Rogov, V. A. Sinels̀hchikov, “Influence of parameters of flow in a parallel plate channel on the CO content of the combustion products,” in Eighth International Symposium on Transport Phenomena in Combustion (Taylor & Francis, Washington, D.C., 1996), Vol. 2, pp. 1818–1828.

Smyth, K. C.

P. J. H. Tjossen, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

Starikovsky, A. Y.

A. P. Zuev, A. Y. Starikovsky, “UV absorption cross section of the molecules O2, NO, N2O, CO2, H2O, and NO2,” J. Appl. Spectrosc. 52, 304–313 (1990).
[CrossRef]

ter Meulen, J. J.

M. Drabbels, J. Heinze, J. J. ter Meulen, W. L. Meerts, “High resolution double-resonance spectroscopy on Rydberg states of CO,” J. Chem. Phys. 99, 5701–5711 (1993).
[CrossRef]

Tjossen, P. J. H.

P. J. H. Tjossen, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

van der Meij, C. E.

van Oostendorp, D. L.

D. L. van Oostendorp, W. T. A. Borghols, H. B. Levinsky, “The influence of ambient air entrainment on partially premixed burner flames: LIF imaging of CO and OH,” Combust. Sci. Technol. 79, 195–206 (1991).
[CrossRef]

Vasilèva, I. A.

S. A. Self, I. A. Vasilèva, A. P. Nefedov, “Plasma diagnostics in an MHD installation,” in Open-Cycle Magnetohydrodynamic Electrical Power Generation, M. Petric, B. Ya. Shumyatsky, eds. (Argonne National Laboratories, Argonne, Ill., 1978), Chap. 14, pp. 622–680.

Wallin, S.

M. Alden, S. Wallin, W. Wendt, “Application of two photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Wendt, W.

M. Alden, S. Wallin, W. Wendt, “Application of two photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Westblom, U.

Westley, F.

F. Westley, Table of Recommended Rate Constants for Chemical Reactions Occurring in Combustion (U.S. GPO, Washington, D.C., 1980).

Yoshimura, M.

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of O2 and CO2 from vibrationally excited states at high temperature,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

Ziborov, V. S.

A. V. Eremin, V. V. Shumova, V. S. Ziborov, H-J. Mick, P. Roth, “Laser-flash-photolysis study of the decomposition of vibrationally excited CO2,” in Proceedings of the 20th International Symposium on Shock Waves (World Scientific, Pasadena, Calif., 1995), Vol. 2, pp. 881–886.

Zuev, A. P.

A. P. Zuev, A. Y. Starikovsky, “UV absorption cross section of the molecules O2, NO, N2O, CO2, H2O, and NO2,” J. Appl. Spectrosc. 52, 304–313 (1990).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

M. Alden, S. Wallin, W. Wendt, “Application of two photon absorption for detection of CO in combustion gases,” Appl. Phys. B 33, 205–208 (1984).
[CrossRef]

Chem. Phys. Lett. (2)

U. Meier, K. Kohse-Hoinghaus, Th. Just, “H and O atom detection for combustion applications: study of quenching and laser photolysis effects,” Chem. Phys. Lett. 126, 567–573 (1986).
[CrossRef]

M. Koshi, M. Yoshimura, H. Matsui, “Photodissociation of O2 and CO2 from vibrationally excited states at high temperature,” Chem. Phys. Lett. 176, 519–525 (1991).
[CrossRef]

Combust. Flame (2)

J. S. Bernstein, A. Fein, J. B. Choi, T. A. Cool, R. C. Sausa, S. L. Howard, R. J. Locke, A. W. Miziolek, “Laser-based flame species profile measurements: a comparison with flame model predictions,” Combust. Flame 92, 85–105 (1993).
[CrossRef]

M. S. Benilov, P. A. Pozdeev, B. V. Rogov, V. A. Sinel’shchikov, “Nonequilibrium boundary layer of potassium-seeded combustion products,” Combust. Flame 98, 313–325 (1994).
[CrossRef]

Combust. Sci. Technol. (1)

D. L. van Oostendorp, W. T. A. Borghols, H. B. Levinsky, “The influence of ambient air entrainment on partially premixed burner flames: LIF imaging of CO and OH,” Combust. Sci. Technol. 79, 195–206 (1991).
[CrossRef]

High Temp. (USSR) (2)

A. V. Mokhov, A. P. Nefedov, “Calibrated low-temperature plasma source for diagnostic research,” High Temp. (USSR) 25, 609–613 (1987).

M. G. Kasparov, A. V. Mokhov, A. P. Nefedov, “Formation kinetics of sodium compounds in combustion product plasmas of propane in air,” High Temp. (USSR) 26, 463–469 (1988).

J. Appl. Spectrosc. (1)

A. P. Zuev, A. Y. Starikovsky, “UV absorption cross section of the molecules O2, NO, N2O, CO2, H2O, and NO2,” J. Appl. Spectrosc. 52, 304–313 (1990).
[CrossRef]

J. Chem. Phys. (2)

M. Drabbels, J. Heinze, J. J. ter Meulen, W. L. Meerts, “High resolution double-resonance spectroscopy on Rydberg states of CO,” J. Chem. Phys. 99, 5701–5711 (1993).
[CrossRef]

P. J. H. Tjossen, K. C. Smyth, “Multiphoton excitation spectroscopy of the B1Σ+ and C1Σ+ Rydberg states of CO,” J. Chem. Phys. 91, 2041–2048 (1989).
[CrossRef]

Other (4)

A. V. Eremin, V. V. Shumova, V. S. Ziborov, H-J. Mick, P. Roth, “Laser-flash-photolysis study of the decomposition of vibrationally excited CO2,” in Proceedings of the 20th International Symposium on Shock Waves (World Scientific, Pasadena, Calif., 1995), Vol. 2, pp. 881–886.

F. Westley, Table of Recommended Rate Constants for Chemical Reactions Occurring in Combustion (U.S. GPO, Washington, D.C., 1980).

S. A. Self, I. A. Vasilèva, A. P. Nefedov, “Plasma diagnostics in an MHD installation,” in Open-Cycle Magnetohydrodynamic Electrical Power Generation, M. Petric, B. Ya. Shumyatsky, eds. (Argonne National Laboratories, Argonne, Ill., 1978), Chap. 14, pp. 622–680.

A. P. Nefedov, B. V. Rogov, V. A. Sinels̀hchikov, “Influence of parameters of flow in a parallel plate channel on the CO content of the combustion products,” in Eighth International Symposium on Transport Phenomena in Combustion (Taylor & Francis, Washington, D.C., 1996), Vol. 2, pp. 1818–1828.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the experimental setup for LIF measurements.

Fig. 2
Fig. 2

Laser power-density dependence of the CO fluorescence signal in a mixture of 0.095% CO with N2 at atmospheric pressure and room temperature.

Fig. 3
Fig. 3

α dependence of the normalized CO concentration: experimental data, filled triangles; calculated equilibrium values, open circles.

Fig. 4
Fig. 4

Laser excitation spectrum of CO in the combustion product flow at α = 1.28: experimental data, filled squares; results of the calculation, dashed curve.

Fig. 5
Fig. 5

Laser power-density dependence of the CO fluorescence signal in the combustion product flow at α = 1.28.

Fig. 6
Fig. 6

Laser excitation spectrum of CO in mixtures of CO2 and O2 at 1300 K. The circles show the experimental data: mixture (90% CO2, 10% O2), filled circles; mixture (50% CO2, 50% O2), open circles. The data for mixture (50% CO2, 50% O2) are multiplied by 1.8. The curve shows the calculated spectrum at T = 1300 K and for a CO concentration of 9 × 1015 cm-3.

Fig. 7
Fig. 7

Temperature (open circles) and CO concentration (filled squares) profiles across the BL at α = 1.25.

Fig. 8
Fig. 8

CO2 absorption cross section from Ref. 13 (solid line) and relative concentration of CO, formed by CO2 photodissociation under the action of a laser pulse at 230.08 nm and measured in the combustion product flow (filled squares) and in heated mixtures of CO2 and O2 (open square), as a function of inverse temperature. The dashed line represents the calculation by Eq. (5).

Fig. 9
Fig. 9

Temperature (open circles), measured CO concentration before correction (open squares) and after correction (filled squares), and equilibrium CO concentration (dashed curve) as a function of α in the combustion product flow.

Fig. 10
Fig. 10

Profiles of temperature (open circles), measured CO concentration before correction (open squares) and after correction (filled squares), and calculated CO concentration (dashed curve) across the BL at α = 1.1.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I FL n CO A BA I L     k ν 1 + ν 2 φ ν 1 φ ν 2 d ν 1 d ν 2 W i ,
CO   +   OH     CO 2   +   H ,
H   +   O 2     OH   +   O ,
OH   +   OH     H 2 O   +   O .
n CO p / n CO 2 = 3.3   exp - 9400 / T .
I FL A BA I L     n CO t k ν 1 + ν 2 + n CO p k * ν 1 + ν 2 φ ν 1 φ ν 2 d ν 1 d ν 2 W i ,

Metrics