Abstract

We investigated the Rayleigh scattering of silica core optical fibers, parts of which were heat treated at various temperatures, in relation to their fictive temperatures (T f). The scattering intensities from short fiber segments were clearly reduced by heat treatment compared with those of the unheated parts. The T f values of the heated parts of the fibers were determined by measuring the infrared reflection spectrum for cleaved end surfaces and were also reduced by controlling the heating temperature. The reduction in the scattering intensity correlates well with the reduction in T f.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
    [CrossRef]
  2. K. Tajima, M. Tateda, M. Ohashi, “Low Rayleigh-scattering loss of P2O5-SiO2-core single-mode fiber,” in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 2–3.
  3. J. Schroeder, R. Mohr, C. J. Montrose, P. B. Macedo, “Light scattering in a number of optical grade glasses,” J. Non-Cryst. Solids 13, 313–320 (1973/74).
    [CrossRef]
  4. S. Sakaguchi, S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. Suppl. 37-1, 56–58 (1998).
  5. J. Schroeder, “Light scattering of glass,” in Treatise on Materials Science and Technology, M. Tomozawa, R. H. Doremus, eds. (Academic, Orlando, Fla., 1977), Vol. 12, p. 158.
  6. S. Todoroki, S. Sakaguchi, “Rayleigh scattering and fictive temperature in VAD silica glass with heat treatment,” J. Ceram. Soc. Jpn. 105, 377–380 (1997).
    [CrossRef]
  7. S. Sakaguchi, S. Todoroki, “Rayleigh scattering in silica glasses,” J. Am. Ceram. Soc. 79, 2821–2824 (1996).
    [CrossRef]
  8. S. Sakaguchi, S. Todoroki, T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220, 178–186 (1997).
    [CrossRef]
  9. I. V. Pevnitskii, V. Kh. Khalilov, “Light scattering in vitreous silica,” Sov. J. Glass Phys. Chem. 15, 246–250 (1989).
  10. K. Inada, “A new graphical method relating to optical fiber attenuation,” Opt. Commun. 19, 437–439 (1976).
    [CrossRef]
  11. H. Hattori, Y. Ohishi, T. Kanamori, S. Takahashi, “Scattering loss measurement for small segments of fluoride optical fibers,” Appl. Opt. 25, 3549–3551 (1986).
    [CrossRef] [PubMed]
  12. A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
    [CrossRef]
  13. Y. L. Peng, A. Agarwal, M. Tomozawa, T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217, 272–277 (1997).
    [CrossRef]
  14. H. N. Daglish, “Light scattering in selected optical glasses,” Glass Technol. 11, 30–35 (1970).
  15. See, for example, G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).
  16. K. Saito, A. J. Ikushima, “Reduction of light-scattering loss in silica glass by the structural relaxation of “frozen-in” density fluctuations,” Appl. Phys. Lett. 70, 3504–3506 (1997).
    [CrossRef]

1998

S. Sakaguchi, S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. Suppl. 37-1, 56–58 (1998).

1997

S. Todoroki, S. Sakaguchi, “Rayleigh scattering and fictive temperature in VAD silica glass with heat treatment,” J. Ceram. Soc. Jpn. 105, 377–380 (1997).
[CrossRef]

S. Sakaguchi, S. Todoroki, T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220, 178–186 (1997).
[CrossRef]

Y. L. Peng, A. Agarwal, M. Tomozawa, T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217, 272–277 (1997).
[CrossRef]

K. Saito, A. J. Ikushima, “Reduction of light-scattering loss in silica glass by the structural relaxation of “frozen-in” density fluctuations,” Appl. Phys. Lett. 70, 3504–3506 (1997).
[CrossRef]

1996

S. Sakaguchi, S. Todoroki, “Rayleigh scattering in silica glasses,” J. Am. Ceram. Soc. 79, 2821–2824 (1996).
[CrossRef]

1995

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

1990

See, for example, G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).

1989

I. V. Pevnitskii, V. Kh. Khalilov, “Light scattering in vitreous silica,” Sov. J. Glass Phys. Chem. 15, 246–250 (1989).

1986

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

H. Hattori, Y. Ohishi, T. Kanamori, S. Takahashi, “Scattering loss measurement for small segments of fluoride optical fibers,” Appl. Opt. 25, 3549–3551 (1986).
[CrossRef] [PubMed]

1976

K. Inada, “A new graphical method relating to optical fiber attenuation,” Opt. Commun. 19, 437–439 (1976).
[CrossRef]

1970

H. N. Daglish, “Light scattering in selected optical glasses,” Glass Technol. 11, 30–35 (1970).

Agarwal, A.

Y. L. Peng, A. Agarwal, M. Tomozawa, T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217, 272–277 (1997).
[CrossRef]

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Asano, Y.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Blanchet, T. A.

Y. L. Peng, A. Agarwal, M. Tomozawa, T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217, 272–277 (1997).
[CrossRef]

Daglish, H. N.

H. N. Daglish, “Light scattering in selected optical glasses,” Glass Technol. 11, 30–35 (1970).

Davis, K. M.

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Hattori, H.

Ikushima, A. J.

K. Saito, A. J. Ikushima, “Reduction of light-scattering loss in silica glass by the structural relaxation of “frozen-in” density fluctuations,” Appl. Phys. Lett. 70, 3504–3506 (1997).
[CrossRef]

Inada, K.

K. Inada, “A new graphical method relating to optical fiber attenuation,” Opt. Commun. 19, 437–439 (1976).
[CrossRef]

Ishiguro, Y.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Itoh, S.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Kakii, T.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Kanamori, H.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Kanamori, T.

Khalilov, V. Kh.

I. V. Pevnitskii, V. Kh. Khalilov, “Light scattering in vitreous silica,” Sov. J. Glass Phys. Chem. 15, 246–250 (1989).

Macedo, P. B.

J. Schroeder, R. Mohr, C. J. Montrose, P. B. Macedo, “Light scattering in a number of optical grade glasses,” J. Non-Cryst. Solids 13, 313–320 (1973/74).
[CrossRef]

Mohr, R.

J. Schroeder, R. Mohr, C. J. Montrose, P. B. Macedo, “Light scattering in a number of optical grade glasses,” J. Non-Cryst. Solids 13, 313–320 (1973/74).
[CrossRef]

Montrose, C. J.

J. Schroeder, R. Mohr, C. J. Montrose, P. B. Macedo, “Light scattering in a number of optical grade glasses,” J. Non-Cryst. Solids 13, 313–320 (1973/74).
[CrossRef]

Murata, T.

S. Sakaguchi, S. Todoroki, T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220, 178–186 (1997).
[CrossRef]

Ohashi, M.

K. Tajima, M. Tateda, M. Ohashi, “Low Rayleigh-scattering loss of P2O5-SiO2-core single-mode fiber,” in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 2–3.

Ohishi, Y.

Peng, Y. L.

Y. L. Peng, A. Agarwal, M. Tomozawa, T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217, 272–277 (1997).
[CrossRef]

Pevnitskii, I. V.

I. V. Pevnitskii, V. Kh. Khalilov, “Light scattering in vitreous silica,” Sov. J. Glass Phys. Chem. 15, 246–250 (1989).

Saito, K.

K. Saito, A. J. Ikushima, “Reduction of light-scattering loss in silica glass by the structural relaxation of “frozen-in” density fluctuations,” Appl. Phys. Lett. 70, 3504–3506 (1997).
[CrossRef]

Sakaguchi, S.

S. Sakaguchi, S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. Suppl. 37-1, 56–58 (1998).

S. Todoroki, S. Sakaguchi, “Rayleigh scattering and fictive temperature in VAD silica glass with heat treatment,” J. Ceram. Soc. Jpn. 105, 377–380 (1997).
[CrossRef]

S. Sakaguchi, S. Todoroki, T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220, 178–186 (1997).
[CrossRef]

S. Sakaguchi, S. Todoroki, “Rayleigh scattering in silica glasses,” J. Am. Ceram. Soc. 79, 2821–2824 (1996).
[CrossRef]

Scherer, G. W.

See, for example, G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).

Schroeder, J.

J. Schroeder, R. Mohr, C. J. Montrose, P. B. Macedo, “Light scattering in a number of optical grade glasses,” J. Non-Cryst. Solids 13, 313–320 (1973/74).
[CrossRef]

J. Schroeder, “Light scattering of glass,” in Treatise on Materials Science and Technology, M. Tomozawa, R. H. Doremus, eds. (Academic, Orlando, Fla., 1977), Vol. 12, p. 158.

Tajima, K.

K. Tajima, M. Tateda, M. Ohashi, “Low Rayleigh-scattering loss of P2O5-SiO2-core single-mode fiber,” in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 2–3.

Takahashi, S.

Tanaka, G.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Tanaka, S.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Tateda, M.

K. Tajima, M. Tateda, M. Ohashi, “Low Rayleigh-scattering loss of P2O5-SiO2-core single-mode fiber,” in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 2–3.

Todoroki, S.

S. Sakaguchi, S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. Suppl. 37-1, 56–58 (1998).

S. Todoroki, S. Sakaguchi, “Rayleigh scattering and fictive temperature in VAD silica glass with heat treatment,” J. Ceram. Soc. Jpn. 105, 377–380 (1997).
[CrossRef]

S. Sakaguchi, S. Todoroki, T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220, 178–186 (1997).
[CrossRef]

S. Sakaguchi, S. Todoroki, “Rayleigh scattering in silica glasses,” J. Am. Ceram. Soc. 79, 2821–2824 (1996).
[CrossRef]

Tomozawa, M.

Y. L. Peng, A. Agarwal, M. Tomozawa, T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217, 272–277 (1997).
[CrossRef]

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Watanabe, M.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Yokota, H.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Yoshida, I.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Saito, A. J. Ikushima, “Reduction of light-scattering loss in silica glass by the structural relaxation of “frozen-in” density fluctuations,” Appl. Phys. Lett. 70, 3504–3506 (1997).
[CrossRef]

Glass Technol.

H. N. Daglish, “Light scattering in selected optical glasses,” Glass Technol. 11, 30–35 (1970).

IEEE J. Lightwave Technol.

H. Kanamori, H. Yokota, G. Tanaka, M. Watanabe, Y. Ishiguro, I. Yoshida, T. Kakii, S. Itoh, Y. Asano, S. Tanaka, “Transmission characteristics and reliability of pure-silica-core single-mode fibers,” IEEE J. Lightwave Technol. LT-4, 1144–1149 (1986).
[CrossRef]

J. Am. Ceram. Soc.

S. Sakaguchi, S. Todoroki, “Rayleigh scattering in silica glasses,” J. Am. Ceram. Soc. 79, 2821–2824 (1996).
[CrossRef]

J. Ceram. Soc. Jpn.

S. Todoroki, S. Sakaguchi, “Rayleigh scattering and fictive temperature in VAD silica glass with heat treatment,” J. Ceram. Soc. Jpn. 105, 377–380 (1997).
[CrossRef]

J. Non-Cryst. Solids

S. Sakaguchi, S. Todoroki, T. Murata, “Rayleigh scattering in silica glass with heat treatment,” J. Non-Cryst. Solids 220, 178–186 (1997).
[CrossRef]

J. Schroeder, R. Mohr, C. J. Montrose, P. B. Macedo, “Light scattering in a number of optical grade glasses,” J. Non-Cryst. Solids 13, 313–320 (1973/74).
[CrossRef]

See, for example, G. W. Scherer, “Theories of relaxation,” J. Non-Cryst. Solids 123, 75–89 (1990).

A. Agarwal, K. M. Davis, M. Tomozawa, “A simple IR spectroscopic method for determining fictive temperature of silica glasses,” J. Non-Cryst. Solids 185, 191–198 (1995).
[CrossRef]

Y. L. Peng, A. Agarwal, M. Tomozawa, T. A. Blanchet, “Radial distribution of fictive temperatures in silica optical fibers,” J. Non-Cryst. Solids 217, 272–277 (1997).
[CrossRef]

Jpn. J. Appl. Phys. Suppl.

S. Sakaguchi, S. Todoroki, “Rayleigh scattering of silica glass and silica fibers with heat treatment,” Jpn. J. Appl. Phys. Suppl. 37-1, 56–58 (1998).

Opt. Commun.

K. Inada, “A new graphical method relating to optical fiber attenuation,” Opt. Commun. 19, 437–439 (1976).
[CrossRef]

Sov. J. Glass Phys. Chem.

I. V. Pevnitskii, V. Kh. Khalilov, “Light scattering in vitreous silica,” Sov. J. Glass Phys. Chem. 15, 246–250 (1989).

Other

J. Schroeder, “Light scattering of glass,” in Treatise on Materials Science and Technology, M. Tomozawa, R. H. Doremus, eds. (Academic, Orlando, Fla., 1977), Vol. 12, p. 158.

K. Tajima, M. Tateda, M. Ohashi, “Low Rayleigh-scattering loss of P2O5-SiO2-core single-mode fiber,” in Optical Fiber Communication Conference, Vol. 4 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 2–3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the apparatus for the measurement of scattered light intensity from short fiber segments.

Fig. 2
Fig. 2

Time-dependent changes in the relative scattering intensity for silica core optical fibers heat treated at various temperatures. The curves were drawn by least-squares fitting Eq. (2). The vertical bar at upper right indicates an error bar.

Fig. 3
Fig. 3

IR reflectance spectrum obtained from the cleaved surface of an unheated part of the silica core fiber. The 1120-cm-1 band is shown in the inset.

Fig. 4
Fig. 4

Plot of T f and the heating temperature obtained from heat-treated silica core fibers. The dwell time is 20 min. The dashed line represents a linear relation between the two temperatures.

Fig. 5
Fig. 5

Plot of the equilibrium scattering loss obtained from the data shown in Fig. 2 and the T f of heated parts of the fiber. The dashed line was drawn based on the previous estimation, i.e., 0.8 μm4 dB/km for silica core fiber with a T f of 1600 °C and 0.6 μm4 dB/km for silica glass with a T f of 1200 °C.

Tables (1)

Tables Icon

Table 1 Summary of Experimental Scattering Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T f = 11603.511 / ν - 1114.51 - 273 ,
I = I e - I e - I 0 exp - t / τ ,

Metrics