Abstract

We discuss the representation of aerosol-scattering properties, boundary information, and the use of these results in line-of-sight rendering applications for visualization of a modeled atmosphere based on a discrete ordinates three-dimensional radiative-transport method. The outputs of the radiative-transfer model provide spatial and angular distributions of limiting path radiance, given an input density distribution and external illumination conditions. We discuss the determination of the direct attenuated radiance, integrated path radiance, and background radiance for each pixel in the rendered scene. Orthographic and perspective projection approaches for displaying these results are described, and sample images are shown.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Tofsted, S. G. O’Brien, “Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer,” Appl. Opt. 37, 7718–7728 (1998).
    [CrossRef]
  2. L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
    [CrossRef]
  3. N. L. Max, “Light diffusion through clouds and haze,” Comput. Vision Graph. Image Proc. 33, 280–292 (1986).
    [CrossRef]
  4. Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986).
    [CrossRef] [PubMed]
  5. A. Zardecki, W. G. Tam, “Iterative method for treating multiple scattering in fogs,” Can. J. Phys. 57, 1301–1308 (1979).
    [CrossRef]
  6. W. Baer, “New approach to earth surface modeling for real-time rendering perspective views,” in Image Modeling, L. A. Ray, J. R. Sullivan, eds., Proc. SPIE1904, 208–221 (1993).
    [CrossRef]
  7. S. A. W. Gerstl, A. Zardecki, “Coupled atmosphere/canopy model for remote sensing of plant reflectance features,” Appl. Opt. 24, 94–103 (1985).
    [CrossRef] [PubMed]
  8. D. S. Kimes, J. A. Kirchner, “Radiative transfer model for heterogeneous 3-D scenes,” Appl. Opt. 21, 4119–4129 (1982).
    [CrossRef] [PubMed]
  9. D. J. Diner, J. V. Martonchik, E. D. Danielson, C. J. Breugge, “Application of 3-D radiative transfer theory to atmospheric correction of land surface images,” in Proceedings of the IEEE Geoscience and Remote Sensing Society ’88 Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1988), pp. 1215–1218.
  10. D. H. Tofsted, S. G. O’Brien, “Characterizing the effects of natural clouds on scene simulations,” in Targets and Backgrounds: Characterization and Representation III, W. R. Watkins, D. Clements, eds., Proc. SPIE3062, 188–198 (1997).
    [CrossRef]
  11. S. G. O’Brien, D. H. Tofsted, “Visualization of dense cloud radiation data in modeling and simulations,” in Visualization of Temporal and Spatial Data for Defense Applications, N. L. Faust, ed., Proc. SPIE3085, 82–93 (1997).
  12. E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0124 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).
  13. D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).
  14. A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).
  15. M. E. Cianciolo, R. G. Rasmussen, “Cloud scene simulation modeling, the enhanced model,” Rep. PL-TR-92-2106 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).
  16. R. D. H. Low, S. G. O’Brien, “EOSAEL 87, cloud transmission module cltran,” Rep. TR-0221-9 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1987), Vol. 9.
  17. H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Boston, 1980).
  18. A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.
  19. A. Miller, “Mie code agaus 82,” Rep. ASL-CR-83-0100-3 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1983).
  20. C. W. Therrien, Decision Estimation and Classification: An Introduction to Pattern Recognition and Related Topics (Wiley, New York, 1989).
  21. D. W. Hoock, “Modeling time-dependent obscuration for simulated imaging of dust and smoke clouds,” in Characterization, Propagation, and Simulation of Sources and Backgrounds, W. R. Watkins, D. Clement, eds., Proc. SPIE1486, 164–175 (1991).
    [CrossRef]

1998 (1)

D. H. Tofsted, S. G. O’Brien, “Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer,” Appl. Opt. 37, 7718–7728 (1998).
[CrossRef]

1997 (1)

L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
[CrossRef]

1986 (2)

N. L. Max, “Light diffusion through clouds and haze,” Comput. Vision Graph. Image Proc. 33, 280–292 (1986).
[CrossRef]

Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986).
[CrossRef] [PubMed]

1985 (1)

1982 (1)

1979 (1)

A. Zardecki, W. G. Tam, “Iterative method for treating multiple scattering in fogs,” Can. J. Phys. 57, 1301–1308 (1979).
[CrossRef]

Baer, W.

W. Baer, “New approach to earth surface modeling for real-time rendering perspective views,” in Image Modeling, L. A. Ray, J. R. Sullivan, eds., Proc. SPIE1904, 208–221 (1993).
[CrossRef]

Berk, A.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Bernstein, L. S.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Borovikov, A. M.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

Brand, S.

L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
[CrossRef]

Breugge, C. J.

D. J. Diner, J. V. Martonchik, E. D. Danielson, C. J. Breugge, “Application of 3-D radiative transfer theory to atmospheric correction of land surface images,” in Proceedings of the IEEE Geoscience and Remote Sensing Society ’88 Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1988), pp. 1215–1218.

Chang, H.-W.

Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986).
[CrossRef] [PubMed]

Cianciolo, M.

L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
[CrossRef]

Cianciolo, M. E.

M. E. Cianciolo, R. G. Rasmussen, “Cloud scene simulation modeling, the enhanced model,” Rep. PL-TR-92-2106 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).

Danielson, E. D.

D. J. Diner, J. V. Martonchik, E. D. Danielson, C. J. Breugge, “Application of 3-D radiative transfer theory to atmospheric correction of land surface images,” in Proceedings of the IEEE Geoscience and Remote Sensing Society ’88 Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1988), pp. 1215–1218.

Davis, B. T.

D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).

Diner, D. J.

D. J. Diner, J. V. Martonchik, E. D. Danielson, C. J. Breugge, “Application of 3-D radiative transfer theory to atmospheric correction of land surface images,” in Proceedings of the IEEE Geoscience and Remote Sensing Society ’88 Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1988), pp. 1215–1218.

Fenn, R. W.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0124 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Fitzgerrel, J.

D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).

Gaivoronskii, I. I.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

Gerstl, S. A. W.

Hembree, L.

L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
[CrossRef]

Hoock, D. W.

D. W. Hoock, “Modeling time-dependent obscuration for simulated imaging of dust and smoke clouds,” in Characterization, Propagation, and Simulation of Sources and Backgrounds, W. R. Watkins, D. Clement, eds., Proc. SPIE1486, 164–175 (1991).
[CrossRef]

Ishimaru, A.

Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986).
[CrossRef] [PubMed]

Khrgian, A.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

Kimes, D. S.

Kirchner, J. A.

Klett, J. D.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Boston, 1980).

Kostarev, V. V.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

Kuga, Y.

Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986).
[CrossRef] [PubMed]

Low, R. D. H.

R. D. H. Low, S. G. O’Brien, “EOSAEL 87, cloud transmission module cltran,” Rep. TR-0221-9 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1987), Vol. 9.

Martonchik, J. V.

D. J. Diner, J. V. Martonchik, E. D. Danielson, C. J. Breugge, “Application of 3-D radiative transfer theory to atmospheric correction of land surface images,” in Proceedings of the IEEE Geoscience and Remote Sensing Society ’88 Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1988), pp. 1215–1218.

Max, N. L.

N. L. Max, “Light diffusion through clouds and haze,” Comput. Vision Graph. Image Proc. 33, 280–292 (1986).
[CrossRef]

Mayse, W. C.

L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
[CrossRef]

Mazin, I. P.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

Miller, A.

A. Miller, “Mie code agaus 82,” Rep. ASL-CR-83-0100-3 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1983).

Minervin, V. E.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

O’Brien, S. G.

D. H. Tofsted, S. G. O’Brien, “Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer,” Appl. Opt. 37, 7718–7728 (1998).
[CrossRef]

S. G. O’Brien, D. H. Tofsted, “Visualization of dense cloud radiation data in modeling and simulations,” in Visualization of Temporal and Spatial Data for Defense Applications, N. L. Faust, ed., Proc. SPIE3085, 82–93 (1997).

D. H. Tofsted, S. G. O’Brien, “Characterizing the effects of natural clouds on scene simulations,” in Targets and Backgrounds: Characterization and Representation III, W. R. Watkins, D. Clements, eds., Proc. SPIE3062, 188–198 (1997).
[CrossRef]

R. D. H. Low, S. G. O’Brien, “EOSAEL 87, cloud transmission module cltran,” Rep. TR-0221-9 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1987), Vol. 9.

Pruppacher, H. R.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Boston, 1980).

Rasmussen, R. G.

M. E. Cianciolo, R. G. Rasmussen, “Cloud scene simulation modeling, the enhanced model,” Rep. PL-TR-92-2106 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).

Robertson, D. C.

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

Shettle, E. P.

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0124 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

Shirkey, R. C.

D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).

Simeter, S. M.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

Soderberg, B.

L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
[CrossRef]

Sutherland, R. A.

D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).

Tam, W. G.

A. Zardecki, W. G. Tam, “Iterative method for treating multiple scattering in fogs,” Can. J. Phys. 57, 1301–1308 (1979).
[CrossRef]

Therrien, C. W.

C. W. Therrien, Decision Estimation and Classification: An Introduction to Pattern Recognition and Related Topics (Wiley, New York, 1989).

Tofsted, D. H.

D. H. Tofsted, S. G. O’Brien, “Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer,” Appl. Opt. 37, 7718–7728 (1998).
[CrossRef]

S. G. O’Brien, D. H. Tofsted, “Visualization of dense cloud radiation data in modeling and simulations,” in Visualization of Temporal and Spatial Data for Defense Applications, N. L. Faust, ed., Proc. SPIE3085, 82–93 (1997).

D. H. Tofsted, S. G. O’Brien, “Characterizing the effects of natural clouds on scene simulations,” in Targets and Backgrounds: Characterization and Representation III, W. R. Watkins, D. Clements, eds., Proc. SPIE3062, 188–198 (1997).
[CrossRef]

D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).

Tsang, L.

Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986).
[CrossRef] [PubMed]

Wetmore, A. E.

D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).

Zak, E. G.

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

Zardecki, A.

S. A. W. Gerstl, A. Zardecki, “Coupled atmosphere/canopy model for remote sensing of plant reflectance features,” Appl. Opt. 24, 94–103 (1985).
[CrossRef] [PubMed]

A. Zardecki, W. G. Tam, “Iterative method for treating multiple scattering in fogs,” Can. J. Phys. 57, 1301–1308 (1979).
[CrossRef]

Appl. Opt. (2)

D. H. Tofsted, S. G. O’Brien, “Physics-based visualization of dense natural clouds. I. Three-dimensional discrete ordinates radiative transfer,” Appl. Opt. 37, 7718–7728 (1998).
[CrossRef]

Y. Kuga, A. Ishimaru, H.-W. Chang, L. Tsang, “Comparisons between the small-angle approximation and the numerical solution for radiative transfer theory,” Appl. Opt. 25, 3803–3805 (1986).
[CrossRef] [PubMed]

Appl. Opt. (2)

Bull. Am. Meteorol. Soc. (1)

L. Hembree, S. Brand, W. C. Mayse, M. Cianciolo, B. Soderberg, “Incorporation of a cloud simulation into a flight mission rehearsal system: prototype demonstration,” Bull. Am. Meteorol. Soc. 78(5), 815–822 (1997).
[CrossRef]

Can. J. Phys. (1)

A. Zardecki, W. G. Tam, “Iterative method for treating multiple scattering in fogs,” Can. J. Phys. 57, 1301–1308 (1979).
[CrossRef]

Comput. Vision Graph. Image Proc. (1)

N. L. Max, “Light diffusion through clouds and haze,” Comput. Vision Graph. Image Proc. 33, 280–292 (1986).
[CrossRef]

Other (14)

W. Baer, “New approach to earth surface modeling for real-time rendering perspective views,” in Image Modeling, L. A. Ray, J. R. Sullivan, eds., Proc. SPIE1904, 208–221 (1993).
[CrossRef]

D. J. Diner, J. V. Martonchik, E. D. Danielson, C. J. Breugge, “Application of 3-D radiative transfer theory to atmospheric correction of land surface images,” in Proceedings of the IEEE Geoscience and Remote Sensing Society ’88 Symposium (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1988), pp. 1215–1218.

D. H. Tofsted, S. G. O’Brien, “Characterizing the effects of natural clouds on scene simulations,” in Targets and Backgrounds: Characterization and Representation III, W. R. Watkins, D. Clements, eds., Proc. SPIE3062, 188–198 (1997).
[CrossRef]

S. G. O’Brien, D. H. Tofsted, “Visualization of dense cloud radiation data in modeling and simulations,” in Visualization of Temporal and Spatial Data for Defense Applications, N. L. Faust, ed., Proc. SPIE3085, 82–93 (1997).

E. P. Shettle, R. W. Fenn, “Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties,” Rep. AFGL-TR-79-0124 (Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1979).

D. H. Tofsted, B. T. Davis, A. E. Wetmore, J. Fitzgerrel, R. C. Shirkey, R. A. Sutherland, “EOSAEL 92 aerosol phase function data base pfndat,” Rep. ARL-TR-273-9 (Army Research Laboratory, White Sands Missile Range, N.M., 1997).

A. Berk, L. S. Bernstein, D. C. Robertson, “modtran: a moderate resolution model for lowtran 7,” Rep. GL-TR-89-0122 (U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Mass., 1988).

M. E. Cianciolo, R. G. Rasmussen, “Cloud scene simulation modeling, the enhanced model,” Rep. PL-TR-92-2106 (Phillips Laboratory, Hanscom Air Force Base, Mass., 1992).

R. D. H. Low, S. G. O’Brien, “EOSAEL 87, cloud transmission module cltran,” Rep. TR-0221-9 (Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1987), Vol. 9.

H. R. Pruppacher, J. D. Klett, Microphysics of Clouds and Precipitation (Reidel, Boston, 1980).

A. M. Borovikov, I. I. Gaivoronskii, E. G. Zak, V. V. Kostarev, I. P. Mazin, V. E. Minervin, A. Khrgian, S. M. Simeter, Cloud Physics, (Fizika oblakov) Translated from the Russian by Israel Program for Scientific Translation, Jerusalem, Israel, 1963; available from the Office of Technical Services, U.S. Dept. of Commerce, Washington, D.C.

A. Miller, “Mie code agaus 82,” Rep. ASL-CR-83-0100-3 (U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range, N.M., 1983).

C. W. Therrien, Decision Estimation and Classification: An Introduction to Pattern Recognition and Related Topics (Wiley, New York, 1989).

D. W. Hoock, “Modeling time-dependent obscuration for simulated imaging of dust and smoke clouds,” in Characterization, Propagation, and Simulation of Sources and Backgrounds, W. R. Watkins, D. Clement, eds., Proc. SPIE1486, 164–175 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Processing procedure for the RT model. The sequence starting with (1) produces the modeled volume internal structure. Sequence (2) generates upper-boundary conditions. Sequence (3) provides surface feature information.

Fig. 2
Fig. 2

Schematic illustration of perspective-projection geometry.

Fig. 3
Fig. 3

Phase functions for K–M PSD aerosols for 0.55-μm radiation, with varying mode radius. The inset shows the forward peak region.

Fig. 4
Fig. 4

G-band limiting-path radiance for a horizontal layer of an aerosol cloud field. Forward-scattering direction (left) and backscattering direction (right).

Fig. 5
Fig. 5

Comparison of the finely gridded concentration produced by the cssm with the coarse grid produced by the DOM model.

Fig. 6
Fig. 6

Comparison of the radiance maps of limiting path radiance for a wide-angle sensor; side scattering (left-hand side) and near backscattering (right-hand side).

Fig. 7
Fig. 7

Schematic diagram showing variable-integration step size keyed to concentration gradient.

Fig. 8
Fig. 8

Orthographic view looking up; the 90° azimuth is toward the bottom of the page.

Fig. 9
Fig. 9

Orthographic view looking down; the 90° azimuth is toward the top of the page.

Fig. 10
Fig. 10

Upward-looking slant path in perspective view; the center zenith angle is 45° and the azimuth angle is 80°.

Fig. 11
Fig. 11

Downward-looking slant path in perspective view; the center zenith angle is 140° and the azimuth angle is 180°.

Fig. 12
Fig. 12

Lateral view in perspective; the center zenith angle is 70° and the azimuth angle is 0°.

Fig. 13
Fig. 13

Perspective view slant path; the zenith angle is 70° and the azimuth angle is 97°.

Tables (1)

Tables Icon

Table 1 Mode Radius Vertical Structure for Various Cloud Types

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

n a = A   a 2   exp - Ba ,
N = 0   n a d a = 2 A B 3 ,     α = 1 N 0   a   n a d a = 3 B .
N = 1.07 × 10 - 7 w L ρ w α 3 .
α = min A 0 + A 1 H ,   A M ,
L s r ¯ ,   Ω = ω   4 π   I r ¯ ,   Ω P r ¯ ,   Ω ,   Ω d Ω ,
4 π   P r ¯ ,   Ω ,   Ω d Ω = 1 .
L si = ω   j = 1 42   I ¯ j P ij Δ Ω j ,
j = 1 42   P ij Δ Ω j = 1 ,
L p = m = 1 N   T m - 1 1 - T m L sm + L b m = 1 N   T m ,

Metrics