Abstract

We explored a number of factors affecting the properties relevant to holographic optical data storage by using a two-color recording scheme in reduced, near-stoichiometric lithium niobate. Two-color, or photon-gated, recording is achieved by use of 852-nm information-carrying beams and 488-nm gating light. Readout at 852 nm is nondestructive, with a gating ratio of ∼104. Recording sensitivity, gating ratio, dynamic range, and dark decay were measured for crystals of differing stoichiometry, degree of reduction, wavelength of the gating light, temperature, and optical power density. The two-color sensitivity per incident photon is still somewhat less than that of the one-color process at 488 nm for ∼1 W/cm2 of gating light but is essentially the same in terms of absorbed photons. Two-color recording is an attractive way of achieving nondestructive readout in a read–write material, and it allows selective optical erasure.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
    [CrossRef]
  2. F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
    [CrossRef]
  3. G. A. Alphonse, W. Phillips, “Read–write holographic memory with iron-doped lithium niobate,” Ferroelectrics 11, 397–401 (1976).
    [CrossRef]
  4. D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
    [CrossRef]
  5. J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
    [CrossRef] [PubMed]
  6. M.-P. Bernal, H. Coufal, R. K. Grygier, J. A. Hoffnagle, C. M. Jefferson, R. M. Macfarlane, R. M. Shelby, G. T. Sincerbox, P. Wimmer, G. Wittmann, “A precision tester for studies of holographic optical storage materials and recording physics,” Appl. Opt. 35, 2360–2374 (1996).
    [CrossRef] [PubMed]
  7. K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
    [CrossRef]
  8. F. Jermann, J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
    [CrossRef]
  9. J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
    [CrossRef]
  10. H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
    [CrossRef]
  11. R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995).
    [CrossRef]
  12. A. Yariv, S. S. Orlov, G. A. Rakuljic, “Holographic storage dynamics in lithium niobate: theory and experiment,” J. Opt. Soc. Am. B 13, 2513–2523 (1996).
    [CrossRef]
  13. M. Bashaw, J. Heanue, “Quasi-stabilized ionic gratings in photorefractive media for multiplex holography,” J. Opt. Soc. Am. B 14, 2024–2042 (1997).
    [CrossRef]
  14. F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
    [CrossRef]
  15. F. Micheron, G. Bismuth, “Field and time thresholds for the electrical fixation of holograms in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973);J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974).
    [CrossRef] [PubMed]
  16. Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993).
    [CrossRef] [PubMed]
  17. H. C. Kuelich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
    [CrossRef]
  18. D. Psaltis, F. Mok, H. S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
    [CrossRef] [PubMed]
  19. E. S. Bjornson, M. C. Bashaw, L. Hesselink, “Digital quasi-phase-matched two-color nonvolatile holographic storage,” Appl. Opt. 36, 3090–3106 (1997).
    [CrossRef] [PubMed]
  20. D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
    [CrossRef]
  21. H. Guenther, G. Wittmann, R. M. Macfarlane, R. R. Neurgaonkar, “Intensity dependence and white light gating of two-color photorefractive gratings in LiNbO3,” Opt. Lett. 22, 1305–1307 (1997).
    [CrossRef]
  22. D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
    [CrossRef]
  23. K. Buse, F. Jermann, E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
    [CrossRef]
  24. K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
    [CrossRef]
  25. F. Jermann, M. Simon, E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
    [CrossRef]
  26. Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
    [CrossRef]
  27. D. Lande, S. S. Orlov, A. Akella, L. Hesselink, R. R. Neurgaonkar, “Digital holographic storage system incorporating optical fixing,” Opt. Lett. 22, 1722–1724 (1997).
    [CrossRef]
  28. N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
    [CrossRef]
  29. D. M. Smyth, “Defects and transport in LiNbO3,” Ferroelectrics 50, 93–102 (1983).
    [CrossRef]
  30. M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973).
    [CrossRef]
  31. K. L. Sweeney, L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
    [CrossRef]
  32. L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
    [CrossRef]
  33. O. F. Schirmer, S. Juppe, J. Koppitz, “ESR—optical and photovoltaic studies of reduced LiNbO3,” Cryst. Latt. Def. Amorph. Mater. 16, 353–357 (1987).
  34. O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
    [CrossRef]
  35. J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).
  36. P. Lerner, C. Legras, J. P. Duman, “Stoechiometrie des monocristaux de metaniobate de lithium,” J. Cryst. Growth 3/4, 231–235 (1968).
    [CrossRef]
  37. D. Dutt, F. J. Feigl, G. G. DeLeo, “Optical absorption and electron paramagnetic resonance studies of chemically reduced lithium niobate,” J. Phys. Chem. Solids 51, 407–415 (1990).
    [CrossRef]
  38. H.-J. Reyher, R. Schulz, O. Thiemann, “Investigation of the optical absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
    [CrossRef]
  39. Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993).
    [CrossRef]
  40. B. C. Grabmaier, F. Otto, “Growth and investigation of MgO doped LiNbO3,” J. Cryst. Growth 79, 682–688 (1986).
    [CrossRef]
  41. R. L. Byer, J. F. Young, R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys. 41, 2320–2325 (1970).
    [CrossRef]
  42. U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
    [CrossRef]
  43. I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993).
    [CrossRef]
  44. O. F. Schirmer, D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
    [CrossRef]
  45. A. Grone, S. Kapphan, “Combination bands of libration + vibration of OH/OD centres in ABO3 crystals,” J. Phys. Cond. Matter 7, 3051–3061 (1995).
    [CrossRef]
  46. R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989).
    [CrossRef]
  47. P. Günter, J.-P. Huignard, “Photorefractive materials and their applications,” in Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 47–52.
  48. Y. S. Bai, R. Kachru, L. Hesselink, R. M. Macfarlane, “Gated recording of holograms using rare-earth doped ferroelectric materials,” U.S. patent5,665,493 (9September1997).
  49. Y. S. Bai, R. R. Neurgaonkar, R. Kachru, “High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous- wave lasers,” Opt. Lett. 22, 334–336 (1997).
    [CrossRef] [PubMed]
  50. F. H. Mok, G. W. Burr, D. Psaltis, “A system metric for holographic memory systems,” Opt. Lett. 21, 896–898 (1996).
    [CrossRef] [PubMed]

1997

1996

1995

F. Jermann, M. Simon, E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

A. Grone, S. Kapphan, “Combination bands of libration + vibration of OH/OD centres in ABO3 crystals,” J. Phys. Cond. Matter 7, 3051–3061 (1995).
[CrossRef]

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

1994

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

H.-J. Reyher, R. Schulz, O. Thiemann, “Investigation of the optical absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[CrossRef]

D. Psaltis, F. Mok, H. S. Li, “Nonvolatile storage in photorefractive crystals,” Opt. Lett. 19, 210–212 (1994).
[CrossRef] [PubMed]

1993

F. Jermann, J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993).
[CrossRef]

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

Y. Qiao, S. Orlov, D. Psaltis, R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75Ba0.25Nb2O6,” Opt. Lett. 18, 1004–1006 (1993).
[CrossRef] [PubMed]

1992

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

1991

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

1990

D. Dutt, F. J. Feigl, G. G. DeLeo, “Optical absorption and electron paramagnetic resonance studies of chemically reduced lithium niobate,” J. Phys. Chem. Solids 51, 407–415 (1990).
[CrossRef]

1989

R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989).
[CrossRef]

1987

O. F. Schirmer, S. Juppe, J. Koppitz, “ESR—optical and photovoltaic studies of reduced LiNbO3,” Cryst. Latt. Def. Amorph. Mater. 16, 353–357 (1987).

H. C. Kuelich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

1986

B. C. Grabmaier, F. Otto, “Growth and investigation of MgO doped LiNbO3,” J. Cryst. Growth 79, 682–688 (1986).
[CrossRef]

1984

L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

1983

K. L. Sweeney, L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

D. M. Smyth, “Defects and transport in LiNbO3,” Ferroelectrics 50, 93–102 (1983).
[CrossRef]

J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).

1981

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

1978

O. F. Schirmer, D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[CrossRef]

1976

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

G. A. Alphonse, W. Phillips, “Read–write holographic memory with iron-doped lithium niobate,” Ferroelectrics 11, 397–401 (1976).
[CrossRef]

1974

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

1973

F. Micheron, G. Bismuth, “Field and time thresholds for the electrical fixation of holograms in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973);J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974).
[CrossRef] [PubMed]

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973).
[CrossRef]

1972

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

1971

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

1970

R. L. Byer, J. F. Young, R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys. 41, 2320–2325 (1970).
[CrossRef]

1968

P. Lerner, C. Legras, J. P. Duman, “Stoechiometrie des monocristaux de metaniobate de lithium,” J. Cryst. Growth 3/4, 231–235 (1968).
[CrossRef]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

1966

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Agullo-Lopez, F.

L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Akella, A.

Alphonse, G. A.

G. A. Alphonse, W. Phillips, “Read–write holographic memory with iron-doped lithium niobate,” Ferroelectrics 11, 397–401 (1976).
[CrossRef]

Amodei, J. J.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Arizmendi, L.

R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Armington, A. F.

J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).

Asano, H.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bai, Y. S.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Y. S. Bai, R. R. Neurgaonkar, R. Kachru, “High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous- wave lasers,” Opt. Lett. 22, 334–336 (1997).
[CrossRef] [PubMed]

Y. S. Bai, R. Kachru, L. Hesselink, R. M. Macfarlane, “Gated recording of holograms using rare-earth doped ferroelectric materials,” U.S. patent5,665,493 (9September1997).

Ballmann, A. A.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bashaw, M.

M. Bashaw, J. Heanue, “Quasi-stabilized ionic gratings in photorefractive media for multiplex holography,” J. Opt. Soc. Am. B 14, 2024–2042 (1997).
[CrossRef]

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Bashaw, M. C.

Baumann, I.

I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993).
[CrossRef]

Bernal, M.-P.

Betzler, K.

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

Bismuth, G.

F. Micheron, G. Bismuth, “Field and time thresholds for the electrical fixation of holograms in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973);J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974).
[CrossRef] [PubMed]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Bjornson, E. S.

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Bremer, T.

R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989).
[CrossRef]

Burr, G. W.

Buse, K.

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

Byer, R. L.

R. L. Byer, J. F. Young, R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys. 41, 2320–2325 (1970).
[CrossRef]

Cabrera, J. M.

R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

Carrascosa, M.

R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Clark, M. G.

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973).
[CrossRef]

Coufal, H.

DeLeo, G. G.

D. Dutt, F. J. Feigl, G. G. DeLeo, “Optical absorption and electron paramagnetic resonance studies of chemically reduced lithium niobate,” J. Phys. Chem. Solids 51, 407–415 (1990).
[CrossRef]

DiSalvo, F. J.

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973).
[CrossRef]

Duman, J. P.

P. Lerner, C. Legras, J. P. Duman, “Stoechiometrie des monocristaux de metaniobate de lithium,” J. Cryst. Growth 3/4, 231–235 (1968).
[CrossRef]

Dutt, D.

D. Dutt, F. J. Feigl, G. G. DeLeo, “Optical absorption and electron paramagnetic resonance studies of chemically reduced lithium niobate,” J. Phys. Chem. Solids 51, 407–415 (1990).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Feigelson, R. S.

R. L. Byer, J. F. Young, R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys. 41, 2320–2325 (1970).
[CrossRef]

Feigl, F. J.

D. Dutt, F. J. Feigl, G. G. DeLeo, “Optical absorption and electron paramagnetic resonance studies of chemically reduced lithium niobate,” J. Phys. Chem. Solids 51, 407–415 (1990).
[CrossRef]

Fraser, D. B.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Furukawa, Y.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993).
[CrossRef]

Glass, A. M.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973).
[CrossRef]

Grabmaier, B. C.

B. C. Grabmaier, F. Otto, “Growth and investigation of MgO doped LiNbO3,” J. Cryst. Growth 79, 682–688 (1986).
[CrossRef]

Grone, A.

A. Grone, S. Kapphan, “Combination bands of libration + vibration of OH/OD centres in ABO3 crystals,” J. Phys. Cond. Matter 7, 3051–3061 (1995).
[CrossRef]

Grygier, R. K.

Guenter, P.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Guenther, H.

Günter, P.

P. Günter, J.-P. Huignard, “Photorefractive materials and their applications,” in Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 47–52.

Halliburton, L. E.

J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).

K. L. Sweeney, L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

Hayashi, T.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Heanue, J.

M. Bashaw, J. Heanue, “Quasi-stabilized ionic gratings in photorefractive media for multiplex holography,” J. Opt. Soc. Am. B 14, 2024–2042 (1997).
[CrossRef]

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Hertel, P.

R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989).
[CrossRef]

Hesselink, L.

E. S. Bjornson, M. C. Bashaw, L. Hesselink, “Digital quasi-phase-matched two-color nonvolatile holographic storage,” Appl. Opt. 36, 3090–3106 (1997).
[CrossRef] [PubMed]

D. Lande, S. S. Orlov, A. Akella, L. Hesselink, R. R. Neurgaonkar, “Digital holographic storage system incorporating optical fixing,” Opt. Lett. 22, 1722–1724 (1997).
[CrossRef]

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Y. S. Bai, R. Kachru, L. Hesselink, R. M. Macfarlane, “Gated recording of holograms using rare-earth doped ferroelectric materials,” U.S. patent5,665,493 (9September1997).

Hoffnagle, J. A.

Huignard, J.-P.

P. Günter, J.-P. Huignard, “Photorefractive materials and their applications,” in Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 47–52.

Iyi, N.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Izumi, F.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Jefferson, C. M.

Jermann, F.

F. Jermann, M. Simon, E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

F. Jermann, J. Otten, “Light-induced charge transport in LiNbO3:Fe at high light intensities,” J. Opt. Soc. Am. B 10, 2085–2092 (1993).
[CrossRef]

Ji, Y.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Juppe, S.

O. F. Schirmer, S. Juppe, J. Koppitz, “ESR—optical and photovoltaic studies of reduced LiNbO3,” Cryst. Latt. Def. Amorph. Mater. 16, 353–357 (1987).

Kachru, R.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Y. S. Bai, R. R. Neurgaonkar, R. Kachru, “High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous- wave lasers,” Opt. Lett. 22, 334–336 (1997).
[CrossRef] [PubMed]

Y. S. Bai, R. Kachru, L. Hesselink, R. M. Macfarlane, “Gated recording of holograms using rare-earth doped ferroelectric materials,” U.S. patent5,665,493 (9September1997).

Kapphan, S.

A. Grone, S. Kapphan, “Combination bands of libration + vibration of OH/OD centres in ABO3 crystals,” J. Phys. Cond. Matter 7, 3051–3061 (1995).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Ketchum, J. L.

J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).

Kimura, S.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Kitamura, K.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993).
[CrossRef]

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Koppitz, J.

O. F. Schirmer, S. Juppe, J. Koppitz, “ESR—optical and photovoltaic studies of reduced LiNbO3,” Cryst. Latt. Def. Amorph. Mater. 16, 353–357 (1987).

Krabe, D.

I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993).
[CrossRef]

Krätzig, E.

F. Jermann, M. Simon, E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12, 2066–2070 (1995).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

K. Buse, F. Jermann, E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989).
[CrossRef]

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Kuelich, H. C.

H. C. Kuelich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

LaMacchia, J. T.

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

Lande, D.

Legras, C.

P. Lerner, C. Legras, J. P. Duman, “Stoechiometrie des monocristaux de metaniobate de lithium,” J. Cryst. Growth 3/4, 231–235 (1968).
[CrossRef]

Lerner, P.

P. Lerner, C. Legras, J. P. Duman, “Stoechiometrie des monocristaux de metaniobate de lithium,” J. Cryst. Growth 3/4, 231–235 (1968).
[CrossRef]

Levinstein, J. J.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Li, H. S.

Macfarlane, R. M.

Medrano, C.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Micheron, F.

F. Micheron, G. Bismuth, “Field and time thresholds for the electrical fixation of holograms in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973);J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974).
[CrossRef] [PubMed]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

Mok, F.

Mok, F. H.

Montemezzani, G.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Mueller, R.

R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

Nassau, K.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Neurgaonkar, R. R.

Nitanda, F.

Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993).
[CrossRef]

Orlov, S.

Orlov, S. S.

Otten, J.

Otto, F.

B. C. Grabmaier, F. Otto, “Growth and investigation of MgO doped LiNbO3,” J. Cryst. Growth 79, 682–688 (1986).
[CrossRef]

Peterson, G. E.

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973).
[CrossRef]

Phillips, W.

G. A. Alphonse, W. Phillips, “Read–write holographic memory with iron-doped lithium niobate,” Ferroelectrics 11, 397–401 (1976).
[CrossRef]

Psaltis, D.

Qiao, Y.

Rakuljic, G. A.

Reyher, H.-J.

H.-J. Reyher, R. Schulz, O. Thiemann, “Investigation of the optical absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[CrossRef]

Richter, R.

R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989).
[CrossRef]

Rodgers, K. F.

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Rudolph, P.

I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993).
[CrossRef]

Sato, M.

Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993).
[CrossRef]

Schalge, R.

I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993).
[CrossRef]

Schirmer, O. F.

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

O. F. Schirmer, S. Juppe, J. Koppitz, “ESR—optical and photovoltaic studies of reduced LiNbO3,” Cryst. Latt. Def. Amorph. Mater. 16, 353–357 (1987).

O. F. Schirmer, D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[CrossRef]

Schlarb, U.

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

Schulz, R.

H.-J. Reyher, R. Schulz, O. Thiemann, “Investigation of the optical absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[CrossRef]

Shelby, R. M.

Simon, M.

Sincerbox, G. T.

Smith, R. G.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

Smyth, D. M.

D. M. Smyth, “Defects and transport in LiNbO3,” Ferroelectrics 50, 93–102 (1983).
[CrossRef]

Staebler, D. L.

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

Sweeney, K. L.

K. L. Sweeney, L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).

Thiemann, O.

H.-J. Reyher, R. Schulz, O. Thiemann, “Investigation of the optical absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[CrossRef]

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

von der Linde, D.

O. F. Schirmer, D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

Vormann, H.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Weber, G.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Wimmer, P.

Wittmann, G.

Woehlecke, M.

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

Yamamoto, J. K.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Yariv, A.

Young, J. F.

R. L. Byer, J. F. Young, R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys. 41, 2320–2325 (1970).
[CrossRef]

Zgonik, M.

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballmann, J. J. Levinstein, K. Nassau, “Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 9, 72–74 (1966).
[CrossRef]

F. S. Chen, J. T. LaMacchia, D. B. Fraser, “Holographic storage in lithium niobate,” Appl. Phys. Lett. 13, 223–225 (1968).
[CrossRef]

J. J. Amodei, D. L. Staebler, “Holographic pattern fixing in electro-optic crystals,” Appl. Phys. Lett. 18, 540–542 (1971).
[CrossRef]

F. Micheron, G. Bismuth, “Electrical control of fixation and erasure of holographic patterns in ferroelectric materials,” Appl. Phys. Lett. 20, 79–81 (1972).
[CrossRef]

F. Micheron, G. Bismuth, “Field and time thresholds for the electrical fixation of holograms in (Sr0.75Ba0.25)Nb2O6 crystals,” Appl. Phys. Lett. 23, 71–72 (1973);J. B. Thaxter, M. Kestigian, “Unique properties of SBN and their use in a layered optical memory,” Appl. Opt. 13, 913–924 (1974).
[CrossRef] [PubMed]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Multiphoton photorefractive processes for optical storage in LiNbO3,” Appl. Phys. Lett. 25, 155–157 (1974).
[CrossRef]

K. L. Sweeney, L. E. Halliburton, “Oxygen vacancies in lithium niobate,” Appl. Phys. Lett. 43, 336–338 (1983).
[CrossRef]

O. F. Schirmer, D. von der Linde, “Two-photon and x-ray-induced Nb4+ and O- small polarons in LiNbO3,” Appl. Phys. Lett. 33, 35–38 (1978).
[CrossRef]

Cryst. Latt. Def. Amorph. Mater.

O. F. Schirmer, S. Juppe, J. Koppitz, “ESR—optical and photovoltaic studies of reduced LiNbO3,” Cryst. Latt. Def. Amorph. Mater. 16, 353–357 (1987).

Ferroelectrics

K. Buse, F. Jermann, E. Krätzig, “Two-step photorefractive hologram recording in LiNbO3:Fe,” Ferroelectrics 141, 197–205 (1993).
[CrossRef]

D. M. Smyth, “Defects and transport in LiNbO3,” Ferroelectrics 50, 93–102 (1983).
[CrossRef]

G. A. Alphonse, W. Phillips, “Read–write holographic memory with iron-doped lithium niobate,” Ferroelectrics 11, 397–401 (1976).
[CrossRef]

J. Appl. Phys.

R. Mueller, L. Arizmendi, M. Carrascosa, J. M. Cabrera, “Time evolution of grating decay during photorefractive fixing processes,” J. Appl. Phys. 77, 308–312 (1995).
[CrossRef]

K. Kitamura, Y. Furukawa, Y. Ji, M. Zgonik, C. Medrano, G. Montemezzani, P. Guenter, “Photorefractive effect in LiNbO3 crystals enhanced by stoichiometry control,” J. Appl. Phys. 82, 1006–1009 (1997).
[CrossRef]

D. von der Linde, A. M. Glass, K. F. Rodgers, “Optical storage using refractive index changes induced by two-step excitation,” J. Appl. Phys. 47, 217–220 (1976).
[CrossRef]

R. L. Byer, J. F. Young, R. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys. 41, 2320–2325 (1970).
[CrossRef]

J. Chem. Phys.

M. G. Clark, F. J. DiSalvo, A. M. Glass, G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59, 6209–6219 (1973).
[CrossRef]

J. Cryst. Growth

Y. Furukawa, M. Sato, K. Kitamura, F. Nitanda, “Growth and characterization of off-congruent LiNbO3 single crystals grown by the double crucible method,” J. Cryst. Growth 128, 909–914 (1993).
[CrossRef]

B. C. Grabmaier, F. Otto, “Growth and investigation of MgO doped LiNbO3,” J. Cryst. Growth 79, 682–688 (1986).
[CrossRef]

P. Lerner, C. Legras, J. P. Duman, “Stoechiometrie des monocristaux de metaniobate de lithium,” J. Cryst. Growth 3/4, 231–235 (1968).
[CrossRef]

I. Baumann, P. Rudolph, D. Krabe, R. Schalge, “Orthoscopic investigation of the axial optical and compositional homogeneity of Czochralski grown LiNbO3 crystals,” J. Cryst. Growth 128, 903–908 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. C

L. Arizmendi, J. M. Cabrera, F. Agullo-Lopez, “Defects induced in pure and doped LiNbO3 by irradiation and thermal reduction,” J. Phys. C 17, 515–529 (1984).
[CrossRef]

J. Phys. Chem. Solids

D. Dutt, F. J. Feigl, G. G. DeLeo, “Optical absorption and electron paramagnetic resonance studies of chemically reduced lithium niobate,” J. Phys. Chem. Solids 51, 407–415 (1990).
[CrossRef]

O. F. Schirmer, O. Thiemann, M. Woehlecke, “Defects in LiNbO3—experimental aspects,” J. Phys. Chem. Solids 52, 185–200 (1991).
[CrossRef]

J. Phys. Cond. Matter

A. Grone, S. Kapphan, “Combination bands of libration + vibration of OH/OD centres in ABO3 crystals,” J. Phys. Cond. Matter 7, 3051–3061 (1995).
[CrossRef]

J. Solid State Chem.

N. Iyi, K. Kitamura, F. Izumi, J. K. Yamamoto, T. Hayashi, H. Asano, S. Kimura, “Comparitive study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. 101, 340–352 (1992).
[CrossRef]

Opt. Commun.

H. C. Kuelich, “A new approach to read volume holograms at different wavelengths,” Opt. Commun. 64, 407–411 (1987).
[CrossRef]

Opt. Lett.

Opt. Mater.

K. Buse, F. Jermann, E. Krätzig, “Infrared holographic recording in LiNbO3:Fe and LiNbO3:Cu,” Opt. Mater. 4, 237–240 (1995).
[CrossRef]

Phys. Lett.

J. L. Ketchum, K. L. Sweeney, L. E. Halliburton, A. F. Armington, “Vacuum annealing effects in lithium niobate,” Phys. Lett. 94A, 450–453 (1983).

Phys. Rev. B

H.-J. Reyher, R. Schulz, O. Thiemann, “Investigation of the optical absorption bands of Nb4+ and Ti3+ in lithium niobate using magnetic circular dichroism and optically detected magnetic-resonance techniques,” Phys. Rev. B 50, 3609–3619 (1994).
[CrossRef]

U. Schlarb, K. Betzler, “Refractive indices of lithium niobate as a function of temperature, wavelength and composition: a generalized fit,” Phys. Rev. B 48, 15,613–15,620 (1993).
[CrossRef]

Phys. Rev. Lett.

Y. S. Bai, R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78, 2944–2947 (1997).
[CrossRef]

Phys. Stat. Solids

R. Richter, T. Bremer, P. Hertel, E. Krätzig, “Refractive index and concentration profiles of proton-exchanged LiNbO3 waveguides,” Phys. Stat. Solids 114, 765–774 (1989).
[CrossRef]

Sci. Am.

D. Psaltis, F. Mok, “Holographic memories,” Sci. Am. 273(5), 70–76 (1995).
[CrossRef]

Science

J. Heanue, M. Bashaw, L. Hesselink, “Volume holographic storage and retrieval of digital data,” Science 265, 749–752 (1994).
[CrossRef] [PubMed]

Solid State Commun.

H. Vormann, G. Weber, S. Kapphan, E. Krätzig, “Hydrogen as origin of thermal fixing in LiNbO3:Fe,” Solid State Commun. 40, 543–545 (1981).
[CrossRef]

Other

P. Günter, J.-P. Huignard, “Photorefractive materials and their applications,” in Vol. 61 of Topics in Applied Physics (Springer-Verlag, Berlin, 1988), pp. 47–52.

Y. S. Bai, R. Kachru, L. Hesselink, R. M. Macfarlane, “Gated recording of holograms using rare-earth doped ferroelectric materials,” U.S. patent5,665,493 (9September1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic diagram of the two-color and one-color photorefractive effects. CB, conduction band; VB, valence band. Level 1 is attributed to a Nb bipolaron state or Fe2+/Fe3+ state, level 2 to a NbLi antisite polaron, and level 3 to an Fe3+ trap. The single-center model for one-color recording is appropriate to low-power cw writing.

Fig. 2
Fig. 2

Typical write–read–erase curves for holographic gratings in lithium niobate crystals: (a) One-color scheme in which an Ar+ laser at 488 nm and 1 W/cm2 is used for both writing (two beams) and reading (one beam). (b) Two-color scheme in which a distributed Bragg reflector laser diode at 852 nm and 4 W/cm2 is the total intensity used for writing (equally divided into two beams) and an Ar+ laser at 488 nm and 1 W/cm2 is used for the gating step. Nondestructive reading was carried out with one of the unattenuated writing beams (2 W/cm2) and erasing with the gating light.

Fig. 3
Fig. 3

Experimental setup for writing and reading two-color gated plane-wave holograms. L1, collimating lens for the diode laser; AP, anamorphic prism pair; POL, polarization rotator; BS, beam splitter; PM, photomultiplier; LD2, 650-nm laser diode used to probe the gratings; DBR, distributed Bragg reflector.

Fig. 4
Fig. 4

Calculated phase-matching temperature curve for the 1047-nm wavelength used as compared with that for 1064 nm. The insert shows a temperature scan of the harmonic-generation efficiency of a 1-cm crystal.

Fig. 5
Fig. 5

Absorption spectra for different lithium niobate crystals before and after reduction. Note that the peak of the induced absorption is at approximately 3.3 eV rather than 2.5 eV, as in Fe-doped crystals: (a) congruent lithium niobate before and after reduction (note the significant absorption at 800 nm in the reduced crystal), (b) the same for a crystal with stoichiometry of c Li = 49.7%, and (c) absorption of a stoichiometric crystal (c Li = 49.7%) doped with 100 ppm Fe.

Fig. 6
Fig. 6

Temperature dependence measured from the decay of the ESA of the intermediate-state lifetime for three stoichiometric crystals. The activation energy is 0.7 eV.

Fig. 7
Fig. 7

OH- vibrational spectra of lithium niobate. The upper curve represents congruent material with c Li = 48.4%; the three lower curves represent a stoichiometry of c Li = 49.7% (see Table 1 for details of the crystals). SLN2# is a less reduced state of SLN2 that contains 1.7 × 1016 protons/cm3.

Fig. 8
Fig. 8

Dependence of the sensitivity S η2 on the gating intensity at 488 nm for three stoichiometric crystals. The saturation behavior depends strongly on the sample.

Fig. 9
Fig. 9

Write–dark–erase curves for unreduced (SLN3) and reduced (SLN4) crystals with a stoichiometry of c Li = 49.4%. The saturation efficiency is essentially unchanged by reduction, whereas the sensitivity is greatly increased.

Fig. 10
Fig. 10

Dependence of the gating efficiency on the gating wavelength. Also shown is (1) the absorption in the vicinity of the intrinsic band edge and (2) the absorption band induced by reduction.

Fig. 11
Fig. 11

Temperature dependence of the two-color sensitivity in an Fe-doped stoichiometric crystal showing an activation energy of 0.66 eV, which is in good agreement with the depth of the writing level obtained from the ESA decay (Fig. 6).

Fig. 12
Fig. 12

Dependence of the M# or the dynamic range on the writing intensity. This is in contrast to one-color holography in which the M# depends on the modulation index but not on the writing intensity. The crystal length was 9.8 mm.

Fig. 13
Fig. 13

M# as a function of one of the writing-beam intensities (I 2), while the other (I 1) is kept fixed. In contrast, the M# for one-color holograms is proportional to the modulation index.

Fig. 14
Fig. 14

Temperature dependence of the M#, reflecting the fact that, at elevated temperatures, the sensitivity drops much faster than the erasing efficiency. The lengths of the crystals are given in Table 1.

Fig. 15
Fig. 15

Dark decays for several crystals of different doping, stoichiometry, and degrees of reduction, showing a range of activation energies from 0.93 to 1.29 eV that is attributed to proton diffusion. SLN2# is a less reduced state of SLN2 that contains 1.7 × 1016 protons/cm3.

Fig. 16
Fig. 16

Effect of Fe doping on the decay of the population from the intermediate level. The long decay is from a sample without intentional Fe doping (SLN4), and the fast decay is from a comparable sample doped with 60 ppm Fe (SLN4′).

Fig. 17
Fig. 17

Write–dark–erase curves for high-stoichiometry crystals: (a) SLN1 (undoped) and (b) SLN2 (doped with 100 ppm Fe) showing the effect of Fe in eliminating the fast component of the dark decay. This occurs because the presence of Fe shortens the lifetime of the intermediate level, as shown in Fig. 16 for a lower-stoichiometry sample.

Tables (1)

Tables Icon

Table 1 Summary of Data and Comparison of Two-Color and One-Color Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S η 2 = A 0 / τ r lI w ,   I g = 1   W / cm 2 ,

Metrics