Abstract

A study of the optimization and the characteristics of a dry film photopolymerizable recording material is presented. The effects of intensity, the thickness, and the variation of the concentration of each component have been studied. Diffraction efficiencies of 80%, with energetic sensitivities of 40 mJ/cm2, have been obtained in photosensitive films of a 35-μm thickness with a spatial frequency of 1000 lines/mm.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
    [CrossRef]
  2. S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
    [CrossRef] [PubMed]
  3. G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
    [CrossRef]
  4. J. A. Jenney, “Holographic recording with photopolymers,” J. Opt. Soc. Am. 60, 1155–1161 (1970).
    [CrossRef]
  5. M. J. Jeudy, J. J. Robillard, “Spectral sensitization of a variable index material for recording phase holograms with high efficiency,” Opt. Commun. 13, 25 (1975).
    [CrossRef]
  6. S. Calixto, “Dry polymer for holographic recording,” Appl. Opt. 26, 3904–3910 (1987).
    [CrossRef] [PubMed]
  7. C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
    [CrossRef]
  8. Y. B. Boiko, V. S. Solovjer, S. Calixto, D. J. Lougnot, “Dry photopolymer films for computer-generated infrared radiation focusing elements,” Appl. Opt. 33, 787–793 (1994).
    [CrossRef] [PubMed]
  9. S. Blaya, L. Carretero, R. Mallavia, R. F. Madrigal, A. Fimia, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a non-linear response,” Appl. Opt. (to be published).
  10. C. Bräuchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
    [CrossRef]
  11. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).
  12. J. M. Moran, P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964–1970 (1973).
    [CrossRef] [PubMed]
  13. G. Oster, N. Wotherspoon, “Photoreduction of methylene blue by ethylenediaminetetraacetic acid,” J. Am. Chem. Soc. 79, 4836–4838 (1957).
    [CrossRef]
  14. R. H. Kayser, R. H. Young, “The photoreduction of methylene blue by amines. I. A flash photolisys study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
    [CrossRef]
  15. C. S. H. Chen, “Dye-sensitized photopolymerization. I. Polymerization of acrylamide in aqueous solution sensitized by methylene blue-triethanolamine system,” J. Polymer Sci. A 55, 1107–1122 (1965).
  16. W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
    [CrossRef]
  17. S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, “Advances in photopolymer films for display holography,” in Fifth International Symposium on Display Holography, T. H. Jeong, ed., Proc. SPIE2333, 60–70 (1995).
    [CrossRef]
  18. R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
    [CrossRef]
  19. W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiller, “Multicomponent photopolymer systems for volume phase holograms and grating devices,” Appl. Opt. 15, 534–541 (1976).
    [CrossRef] [PubMed]
  20. V. Weiss, E. Millul, A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 11–22 (1996).
    [CrossRef]
  21. S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
    [CrossRef]

1997 (1)

1994 (2)

Y. B. Boiko, V. S. Solovjer, S. Calixto, D. J. Lougnot, “Dry photopolymer films for computer-generated infrared radiation focusing elements,” Appl. Opt. 33, 787–793 (1994).
[CrossRef] [PubMed]

S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

1989 (2)

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

1987 (1)

1983 (1)

C. Bräuchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

1976 (2)

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue by amines. I. A flash photolisys study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

W. J. Tomlinson, E. A. Chandross, H. P. Weber, G. D. Aumiller, “Multicomponent photopolymer systems for volume phase holograms and grating devices,” Appl. Opt. 15, 534–541 (1976).
[CrossRef] [PubMed]

1975 (1)

M. J. Jeudy, J. J. Robillard, “Spectral sensitization of a variable index material for recording phase holograms with high efficiency,” Opt. Commun. 13, 25 (1975).
[CrossRef]

1973 (1)

1970 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

1968 (1)

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

1965 (1)

C. S. H. Chen, “Dye-sensitized photopolymerization. I. Polymerization of acrylamide in aqueous solution sensitized by methylene blue-triethanolamine system,” J. Polymer Sci. A 55, 1107–1122 (1965).

1957 (1)

G. Oster, N. Wotherspoon, “Photoreduction of methylene blue by ethylenediaminetetraacetic acid,” J. Am. Chem. Soc. 79, 4836–4838 (1957).
[CrossRef]

Armstrong, M. L.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, “Advances in photopolymer films for display holography,” in Fifth International Symposium on Display Holography, T. H. Jeong, ed., Proc. SPIE2333, 60–70 (1995).
[CrossRef]

Aumiller, G. D.

Blaya, S.

S. Blaya, L. Carretero, R. Mallavia, R. F. Madrigal, A. Fimia, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a non-linear response,” Appl. Opt. (to be published).

Boiko, Y. B.

Bräuchle, C.

C. Bräuchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

Burland, D. M.

C. Bräuchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

Calixto, S.

Carre, C.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, R. Mallavia, R. F. Madrigal, A. Fimia, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a non-linear response,” Appl. Opt. (to be published).

Chandross, E. A.

Chen, C. S. H.

C. S. H. Chen, “Dye-sensitized photopolymerization. I. Polymerization of acrylamide in aqueous solution sensitized by methylene blue-triethanolamine system,” J. Polymer Sci. A 55, 1107–1122 (1965).

Duzick, T.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Feely, C. A.

Fimia, A.

S. Blaya, L. Carretero, R. Mallavia, R. F. Madrigal, A. Fimia, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a non-linear response,” Appl. Opt. (to be published).

Fouassier, J. P.

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Friesem, A. A.

V. Weiss, E. Millul, A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 11–22 (1996).
[CrossRef]

Gambogi, W. J.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Hamzavy, B.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Ingwall, R. T.

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

Jenney, J. A.

Jeudy, M. J.

M. J. Jeudy, J. J. Robillard, “Spectral sensitization of a variable index material for recording phase holograms with high efficiency,” Opt. Commun. 13, 25 (1975).
[CrossRef]

Kaminow, P.

Kayser, R. H.

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue by amines. I. A flash photolisys study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

Kelly, J.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Leclere, P.

S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Lessard, R. A.

R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
[CrossRef]

Lion, Y. F.

S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Lougnot, D. J.

Y. B. Boiko, V. S. Solovjer, S. Calixto, D. J. Lougnot, “Dry photopolymer films for computer-generated infrared radiation focusing elements,” Appl. Opt. 33, 787–793 (1994).
[CrossRef] [PubMed]

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Mackara, S. R.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, R. Mallavia, R. F. Madrigal, A. Fimia, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a non-linear response,” Appl. Opt. (to be published).

Mallavia, R.

S. Blaya, L. Carretero, R. Mallavia, R. F. Madrigal, A. Fimia, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a non-linear response,” Appl. Opt. (to be published).

Manivannan, G.

R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
[CrossRef]

Martin, S.

S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Millul, E.

V. Weiss, E. Millul, A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 11–22 (1996).
[CrossRef]

Moran, J. M.

O’Connor, P. J.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, “Advances in photopolymer films for display holography,” in Fifth International Symposium on Display Holography, T. H. Jeong, ed., Proc. SPIE2333, 60–70 (1995).
[CrossRef]

Oster, G.

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

G. Oster, N. Wotherspoon, “Photoreduction of methylene blue by ethylenediaminetetraacetic acid,” J. Am. Chem. Soc. 79, 4836–4838 (1957).
[CrossRef]

Renotte, Y.

S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Robillard, J. J.

M. J. Jeudy, J. J. Robillard, “Spectral sensitization of a variable index material for recording phase holograms with high efficiency,” Opt. Commun. 13, 25 (1975).
[CrossRef]

Solovjer, V. S.

Steijn, K. W.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Stevenson, S. H.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, “Advances in photopolymer films for display holography,” in Fifth International Symposium on Display Holography, T. H. Jeong, ed., Proc. SPIE2333, 60–70 (1995).
[CrossRef]

Tipton, D. F.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, “Advances in photopolymer films for display holography,” in Fifth International Symposium on Display Holography, T. H. Jeong, ed., Proc. SPIE2333, 60–70 (1995).
[CrossRef]

Toal, V.

S. Martin, C. A. Feely, V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757–5768 (1997).
[CrossRef] [PubMed]

S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Tomlinson, W. J.

Troll, M.

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

Weber, H. P.

Weiss, V.

V. Weiss, E. Millul, A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 11–22 (1996).
[CrossRef]

Wotherspoon, N.

G. Oster, N. Wotherspoon, “Photoreduction of methylene blue by ethylenediaminetetraacetic acid,” J. Am. Chem. Soc. 79, 4836–4838 (1957).
[CrossRef]

Yang, N.

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

Young, R. H.

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue by amines. I. A flash photolisys study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

C. Bräuchle, D. M. Burland, “Holographic methods for the investigation of photochemical and photophysical properties of molecules,” Angew. Chem. Int. Ed. Engl. 22, 582–598 (1983).
[CrossRef]

Appl. Opt. (5)

Bell. Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell. Syst. Tech. J. 48, 2909–2947 (1969).

Chem. Rev. (1)

G. Oster, N. Yang, “Photopolymerization of vinyl monomers,” Chem. Rev. 68, 125–151 (1968).
[CrossRef]

J. Am. Chem. Soc. (1)

G. Oster, N. Wotherspoon, “Photoreduction of methylene blue by ethylenediaminetetraacetic acid,” J. Am. Chem. Soc. 79, 4836–4838 (1957).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Polymer Sci. A (1)

C. S. H. Chen, “Dye-sensitized photopolymerization. I. Polymerization of acrylamide in aqueous solution sensitized by methylene blue-triethanolamine system,” J. Polymer Sci. A 55, 1107–1122 (1965).

Macromolecules (1)

C. Carre, D. J. Lougnot, J. P. Fouassier, “Holography as tool for mechanistic and kinetic studies of photopolymerization reactions: a theoretical and experimental approach,” Macromolecules 22, 791–799 (1989).
[CrossRef]

Opt. Commun. (1)

M. J. Jeudy, J. J. Robillard, “Spectral sensitization of a variable index material for recording phase holograms with high efficiency,” Opt. Commun. 13, 25 (1975).
[CrossRef]

Opt. Eng. (2)

R. T. Ingwall, M. Troll, “Mechanism of hologram formation in DMP-128 photopolymer,” Opt. Eng. 28, 586–591 (1989).
[CrossRef]

S. Martin, P. Leclere, Y. Renotte, V. Toal, Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33, 3942–3945 (1994).
[CrossRef]

Photochem. Photobiol. (1)

R. H. Kayser, R. H. Young, “The photoreduction of methylene blue by amines. I. A flash photolisys study of the reaction between triplet methylene blue and amines,” Photochem. Photobiol. 24, 395–401 (1976).
[CrossRef]

Other (5)

S. Blaya, L. Carretero, R. Mallavia, R. F. Madrigal, A. Fimia, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a non-linear response,” Appl. Opt. (to be published).

V. Weiss, E. Millul, A. A. Friesem, “Photopolymeric holographic recording media: in-situ and real-time characterization,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 11–22 (1996).
[CrossRef]

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “HOE imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, D. F. Tipton, “Advances in photopolymer films for display holography,” in Fifth International Symposium on Display Holography, T. H. Jeong, ed., Proc. SPIE2333, 60–70 (1995).
[CrossRef]

R. A. Lessard, G. Manivannan, “Holographic recording materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 2–23 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic representation of the setup for the recording of gratings. D’s, detectors; M’s, mirrors; BS, beam splitter; SF, spatial filter; L, lens; Di, diaphragm; G, glass; H, holographic plate; PC, personal computer.

Fig. 2
Fig. 2

Variation of the energetic diffraction efficiency for materials with different thicknesses. The curve with filled circles represents a thickness of 20 μm; the curve with open circles, 40 μm. The chemical composition of the material is AA: 0.33 M; TEA: 0.2 M; MB: 2.6 × 10-4 M; PVA: 10%, where the intensity used is 4 mW/cm2.

Fig. 3
Fig. 3

Scheme of the mechanism proposed for photopolymerization, where DYE stands for photoinitiator; Am, amine; P, polymer; M, monomer; LDYE, leuco dye.

Fig. 4
Fig. 4

Effect on the holographic parameters of the concentration of amine (TEA) in a holographic material of 20-μm thickness. The curve with filled circles represents the energetic sensitivity; the curve with open circles, the diffraction efficiency. The chemical composition of the material is AA: 0.33 M; MB: 2.6 × 10-4 M; PVA: 10%, where the intensity used is 4.3 mW/cm2.

Fig. 5
Fig. 5

Effect on the holographic parameters of the concentration of methylene blue in a holographic material of 27–35-μm thickness. The curve with filled circles represents the energetic sensitivity; the curve with open circles, the diffraction efficiency. The chemical composition of the material is AA: 0.33 M; TEA: 0.2 M; PVA: 10%, where the intensity used is 4.3 mW/cm2.

Fig. 6
Fig. 6

Transmittance spectra of the material when the concentration of methylene blue is changed. The solid curve represents a methylene blue concentration of 8 × 10-4 M; the dashed curve, a methylene blue concentration of 2.1 × 10-4 M. The chemical composition of the material is AA: 0.33 M; TEA: 0.2 M; PVA: 10%.

Fig. 7
Fig. 7

Effect on the holographic parameters of the incident power of the He–Ne laser in a holographic material of 25-μm thickness. The curve with filled circles represents the energetic sensitivity; the curve with open circles, the diffraction efficiency. The chemical composition of the material is AA: 0.33 M; TEA: 0.2 M; MB: 2.6 × 10-4 M; PVA: 10%.

Tables (3)

Tables Icon

Table 1 Concentrations of the Optimal Composition of the Photopolymer System for the Final Photosensible PVA Solution

Tables Icon

Table 2 Variation of the Holographic Parameters (Sensitivity and Maximal Diffraction Efficiency) for Different Monomer Concentrationsa

Tables Icon

Table 3 Comparison of Different Photopolymerizable Films

Metrics