Abstract

We present a regularized nonlinear least-squares algorithm for tracking the position and the orientation of a known object by using an active camera and an optical correlator situated between digital preprocessing and postprocessing operations. The numerical minimization required by the regularized least-squares solution is implemented by use of a rapid look-up table method. Performance of the algorithm is evaluated through a Monte Carlo sensitivity analysis that incorporates models for lens blur, image noise, illumination variation, and partial occlusion. This analysis shows robust performance with respect to image noise, partial occlusion of the object, and errors in the camera pan and tilt used to follow the moving object. The limiting factors in the algorithm’s performance are errors in the preprocessing step used to scale and rotate the input video images. These errors should be maintained within 6% and 3°, respectively.

© 1998 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Robust camera pose estimation from unknown or known line correspondences

Xiaohu Zhang, Zheng Zhang, You Li, Xianwei Zhu, Qifeng Yu, and Jianliang Ou
Appl. Opt. 51(7) 936-948 (2012)

Pose estimation from a two-dimensional view by use of composite correlation filters and neural networks

Albertina Castro, Yann Frauel, Eduardo Tepichín, and Bahram Javidi
Appl. Opt. 42(29) 5882-5890 (2003)

Recognizing blurred, nonfrontal, illumination, and expression variant partially occluded faces

Abhijith Punnappurath and Ambasamudram Narayanan Rajagopalan
J. Opt. Soc. Am. A 33(9) 1887-1900 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (15)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription